These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 23436332)
1. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology. Aguirre AM; Bassi A Biotechnol Bioeng; 2013 Aug; 110(8):2114-22. PubMed ID: 23436332 [TBL] [Abstract][Full Text] [Related]
2. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Griffiths MJ; van Hille RP; Harrison ST Appl Microbiol Biotechnol; 2014 Mar; 98(5):2345-56. PubMed ID: 24413971 [TBL] [Abstract][Full Text] [Related]
3. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Münkel R; Schmid-Staiger U; Werner A; Hirth T Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
5. Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions. Abedini Najafabadi H; Malekzadeh M; Jalilian F; Vossoughi M; Pazuki G Bioresour Technol; 2015 Mar; 180():311-7. PubMed ID: 25621723 [TBL] [Abstract][Full Text] [Related]
6. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
7. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
8. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086 [TBL] [Abstract][Full Text] [Related]
9. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
10. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related]
11. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Liang Y; Sarkany N; Cui Y Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523 [TBL] [Abstract][Full Text] [Related]
12. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Liu ZY; Wang GC; Zhou BC Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270 [TBL] [Abstract][Full Text] [Related]
13. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Pruvost J; Van Vooren G; Le Gouic B; Couzinet-Mossion A; Legrand J Bioresour Technol; 2011 Jan; 102(1):150-8. PubMed ID: 20675127 [TBL] [Abstract][Full Text] [Related]
14. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951 [TBL] [Abstract][Full Text] [Related]
15. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel. Ghosh S; Roy S; Das D Appl Biochem Biotechnol; 2015 Apr; 175(7):3322-35. PubMed ID: 25690351 [TBL] [Abstract][Full Text] [Related]
16. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors. Luangpipat T; Chisti Y J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890 [TBL] [Abstract][Full Text] [Related]
17. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations. Ortiz Montoya EY; Casazza AA; Aliakbarian B; Perego P; Converti A; de Carvalho JC Biotechnol Prog; 2014; 30(4):916-22. PubMed ID: 24532479 [TBL] [Abstract][Full Text] [Related]
18. The effect of degree and timing of nitrogen limitation on lipid productivity in Chlorella vulgaris. Griffiths MJ; van Hille RP; Harrison ST Appl Microbiol Biotechnol; 2014 Jul; 98(13):6147-59. PubMed ID: 24824221 [TBL] [Abstract][Full Text] [Related]
19. Selection of microalgae for lipid production under high levels carbon dioxide. Yoo C; Jun SY; Lee JY; Ahn CY; Oh HM Bioresour Technol; 2010 Jan; 101 Suppl 1():S71-4. PubMed ID: 19362826 [TBL] [Abstract][Full Text] [Related]
20. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Wong YK; Ho YH; Ho KC; Leung HM; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]