BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23436372)

  • 1. Heavy methyl-SILAC labeling coupled with liquid chromatography and high-resolution mass spectrometry to study the dynamics of site-specific histone methylation.
    Cao XJ; Zee BM; Garcia BA
    Methods Mol Biol; 2013; 977():299-313. PubMed ID: 23436372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis.
    Soldi M; Cuomo A; Bonaldi T
    Proteomics; 2016 Jul; 16(14):1952-4. PubMed ID: 27373704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the cell cycle-associated dynamics of histone modifications using quantitative mass spectrometry.
    Xu M; Chen S; Zhu B
    Methods Enzymol; 2012; 512():29-55. PubMed ID: 22910201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining histone posttranslational modification patterns by high-resolution mass spectrometry.
    Lin S; Garcia BA
    Methods Enzymol; 2012; 512():3-28. PubMed ID: 22910200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Histone Acetylation Stoichiometry and Turnover Rate.
    Fan J; Baeza J; Denu JM
    Methods Enzymol; 2016; 574():125-148. PubMed ID: 27423860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo residue-specific histone methylation dynamics.
    Zee BM; Levin RS; Xu B; LeRoy G; Wingreen NS; Garcia BA
    J Biol Chem; 2010 Jan; 285(5):3341-50. PubMed ID: 19940157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Super-SILAC Strategy for the Accurate and Multiplexed Profiling of Histone Posttranslational Modifications.
    Noberini R; Bonaldi T
    Methods Enzymol; 2017; 586():311-332. PubMed ID: 28137569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying chromatin readers using a SILAC-based histone peptide pull-down approach.
    Vermeulen M
    Methods Enzymol; 2012; 512():137-60. PubMed ID: 22910206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS).
    Guan X; Rastogi N; Parthun MR; Freitas MA
    Mol Cell Proteomics; 2013 Aug; 12(8):2048-59. PubMed ID: 23592332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy Methyl SILAC Metabolic Labeling of Human Cell Lines for High-Confidence Identification of R/K-Methylated Peptides by High-Resolution Mass Spectrometry.
    Massignani E; Maniaci M; Bonaldi T
    Methods Mol Biol; 2023; 2603():173-186. PubMed ID: 36370279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC.
    Ong SE; Mittler G; Mann M
    Nat Methods; 2004 Nov; 1(2):119-26. PubMed ID: 15782174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SILAC-Based Quantitative Strategies for Accurate Histone Posttranslational Modification Profiling Across Multiple Biological Samples.
    Cuomo A; Soldi M; Bonaldi T
    Methods Mol Biol; 2017; 1528():97-119. PubMed ID: 27854018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying in vivo, site-specific changes in protein methylation with SILAC.
    Lau HT; Lewis KA; Ong SE
    Methods Mol Biol; 2014; 1188():161-75. PubMed ID: 25059611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Histone Methylation Dynamics by One-Carbon Metabolic Isotope Labeling and High-energy Collisional Dissociation Methylation Signature Ion Detection.
    Tang H; Tian B; Brasier AR; Sowers LC; Zhang K
    Sci Rep; 2016 Aug; 6():31537. PubMed ID: 27530234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrieving Quantitative Information of Histone PTMs by Mass Spectrometry.
    Zhang C; Liu Y
    Methods Enzymol; 2017; 586():165-191. PubMed ID: 28137562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific and efficient N-propionylation of histones with propionic acid N-hydroxysuccinimide ester for histone marks characterization by LC-MS.
    Liao R; Wu H; Deng H; Yu Y; Hu M; Zhai H; Yang P; Zhou S; Yi W
    Anal Chem; 2013 Feb; 85(4):2253-9. PubMed ID: 23339652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of methyl-esterification and other side reactions in a standard propionylation protocol for detection of histone modifications.
    Paternoster V; Edhager AV; Sibbersen C; Nielsen AL; Børglum AD; Christensen JH; Palmfeldt J
    Proteomics; 2016 Jul; 16(14):2059-63. PubMed ID: 27080621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic labeling in middle-down proteomics allows for investigation of the dynamics of the histone code.
    Sidoli S; Lu C; Coradin M; Wang X; Karch KR; Ruminowicz C; Garcia BA
    Epigenetics Chromatin; 2017 Jul; 10(1):34. PubMed ID: 28683815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of histone post translational modifications in primary monocyte derived macrophages using reverse phase×reverse phase chromatography in conjunction with porous graphitic carbon stationary phase.
    Minshull TC; Cole J; Dockrell DH; Read RC; Dickman MJ
    J Chromatogr A; 2016 Jul; 1453():43-53. PubMed ID: 27260198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns.
    Nikolov M; Stützer A; Mosch K; Krasauskas A; Soeroes S; Stark H; Urlaub H; Fischle W
    Mol Cell Proteomics; 2011 Nov; 10(11):M110.005371. PubMed ID: 21836164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.