These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 23436401)

  • 1. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity.
    Chaurey V; Rohani A; Su YH; Liao KT; Chou CF; Swami NS
    Electrophoresis; 2013 Apr; 34(7):1097-104. PubMed ID: 23436401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-constriction device for rapid protein preconcentration in physiological media through a balance of electrokinetic forces.
    Liao KT; Tsegaye M; Chaurey V; Chou CF; Swami NS
    Electrophoresis; 2012 Jul; 33(13):1958-66. PubMed ID: 22806460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.
    Gallo-Villanueva RC; Sano MB; Lapizco-Encinas BH; Davalos RV
    Electrophoresis; 2014 Feb; 35(2-3):352-61. PubMed ID: 24002905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation.
    Aghilinejad A; Aghaamoo M; Chen X; Xu J
    Electrophoresis; 2018 Mar; 39(5-6):869-877. PubMed ID: 28975645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joule heating-enabled electrothermal enrichment of nanoparticles in insulator-based dielectrophoretic microdevices.
    Malekanfard A; Liu Z; Song L; Kale A; Zhang C; Yu L; Song Y; Xuan X
    Electrophoresis; 2021 Mar; 42(5):626-634. PubMed ID: 32935875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.
    Hawkins BG; Kirby BJ
    Electrophoresis; 2010 Nov; 31(22):3622-33. PubMed ID: 21077234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Floating-electrode enhanced constriction dielectrophoresis for biomolecular trapping in physiological media of high conductivity.
    Chaurey V; Polanco C; Chou CF; Swami NS
    Biomicrofluidics; 2012 Mar; 6(1):12806-1280614. PubMed ID: 22481998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct current dielectrophoretic simulation of proteins using an array of circular insulating posts.
    Ivory CF; Srivastava SK
    Electrophoresis; 2011 Sep; 32(17):2323-30. PubMed ID: 23361922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers.
    Liao KT; Chou CF
    J Am Chem Soc; 2012 May; 134(21):8742-5. PubMed ID: 22594700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel.
    Church C; Zhu J; Xuan X
    Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoresis of lambda-DNA using 3D carbon electrodes.
    Martinez-Duarte R; Camacho-Alanis F; Renaud P; Ros A
    Electrophoresis; 2013 Apr; 34(7):1113-22. PubMed ID: 23348619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.