BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23436408)

  • 1. Integration of RNAi and small molecule screens to identify targets for drug development.
    Drosopoulos K; Linardopoulos S
    Methods Mol Biol; 2013; 986():97-104. PubMed ID: 23436408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of RNAi and Small Molecule Screens to Identify Targets for Drug Development.
    Drosopoulos K; Linardopoulos S
    Methods Mol Biol; 2019; 1953():33-42. PubMed ID: 30912014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical methods for analysis of high-throughput RNA interference screens.
    Birmingham A; Selfors LM; Forster T; Wrobel D; Kennedy CJ; Shanks E; Santoyo-Lopez J; Dunican DJ; Long A; Kelleher D; Smith Q; Beijersbergen RL; Ghazal P; Shamu CE
    Nat Methods; 2009 Aug; 6(8):569-75. PubMed ID: 19644458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput RNAi screening for the identification of novel targets.
    Henderson MC; Azorsa DO
    Methods Mol Biol; 2013; 986():89-95. PubMed ID: 23436407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens.
    Perrimon N; Friedman A; Mathey-Prevot B; Eggert US
    Drug Discov Today; 2007 Jan; 12(1-2):28-33. PubMed ID: 17198970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens.
    Yin Z; Zhou X; Bakal C; Li F; Sun Y; Perrimon N; Wong ST
    BMC Bioinformatics; 2008 Jun; 9():264. PubMed ID: 18534020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing an Infrastructure for High-Throughput Short-Interfering RNA Screening.
    Yin H; Sereduk C; Tang N
    Methods Mol Biol; 2016; 1470():1-13. PubMed ID: 27581280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening approaches to identify regulators of mammalian autophagy.
    Joachim J; Jiang M; McKnight NC; Howell M; Tooze SA
    Methods; 2015 Mar; 75():96-104. PubMed ID: 25688674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous analysis of large-scale RNAi screens for pathogen entry.
    Rämö P; Drewek A; Arrieumerlou C; Beerenwinkel N; Ben-Tekaya H; Cardel B; Casanova A; Conde-Alvarez R; Cossart P; Csúcs G; Eicher S; Emmenlauer M; Greber U; Hardt WD; Helenius A; Kasper C; Kaufmann A; Kreibich S; Kühbacher A; Kunszt P; Low SH; Mercer J; Mudrak D; Muntwiler S; Pelkmans L; Pizarro-Cerdá J; Podvinec M; Pujadas E; Rinn B; Rouilly V; Schmich F; Siebourg-Polster J; Snijder B; Stebler M; Studer G; Szczurek E; Truttmann M; von Mering C; Vonderheit A; Yakimovich A; Bühlmann P; Dehio C
    BMC Genomics; 2014 Dec; 15(1):1162. PubMed ID: 25534632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of cryopreserved cell aliquots in the high-throughput screening of small interfering RNA libraries.
    Swearingen EA; Fajardo F; Wang X; Watson JE; Quon KC; Kassner PD
    J Biomol Screen; 2010 Jun; 15(5):469-77. PubMed ID: 20371867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAi screening: new approaches, understandings, and organisms.
    Mohr SE; Perrimon N
    Wiley Interdiscip Rev RNA; 2012; 3(2):145-58. PubMed ID: 21953743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of high-throughput RNAi screening data in identifying genes mediating sensitivity to chemotherapeutic drugs: statistical approaches and perspectives.
    Ye F; Bauer JA; Pietenpol JA; Shyr Y
    BMC Genomics; 2012; 13 Suppl 8(Suppl 8):S3. PubMed ID: 23281588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Content Screening Approaches That Minimize Confounding Factors in RNAi, CRISPR, and Small Molecule Screening.
    Haney SA
    Methods Mol Biol; 2018; 1683():113-130. PubMed ID: 29082490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An RNAi-based high-throughput screening assay to identify small molecule inhibitors of hepatitis B virus replication.
    Ghosh S; Kaushik A; Khurana S; Varshney A; Singh AK; Dahiya P; Thakur JK; Sarin SK; Gupta D; Malhotra P; Mukherjee SK; Bhatnagar RK
    J Biol Chem; 2017 Jul; 292(30):12577-12588. PubMed ID: 28584057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput RNAi screening to dissect cellular pathways: a how-to guide.
    Falschlehner C; Steinbrink S; Erdmann G; Boutros M
    Biotechnol J; 2010 Apr; 5(4):368-76. PubMed ID: 20349460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro High-Throughput RNAi Screening to Accelerate the Process of Target Identification and Drug Development.
    Yin H; Kassner M
    Methods Mol Biol; 2016; 1470():137-49. PubMed ID: 27581290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Management of High-Throughput Screening Libraries with SAVANAH.
    List M; Elnegaard MP; Schmidt S; Christiansen H; Tan Q; Mollenhauer J; Baumbach J
    SLAS Discov; 2017 Feb; 22(2):196-202. PubMed ID: 27729504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput screening by RNA interference: control of two distinct types of variance.
    Stone DJ; Marine S; Majercak J; Ray WJ; Espeseth A; Simon A; Ferrer M
    Cell Cycle; 2007 Apr; 6(8):898-901. PubMed ID: 17438372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A flexible multiwell format for immunofluorescence screening microscopy of small-molecule inhibitors.
    Scholz AK; Klebl BM; Morkel M; Lehrach H; Dahl A; Lange BM
    Assay Drug Dev Technol; 2010 Oct; 8(5):571-80. PubMed ID: 20666660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.