BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23436412)

  • 1. Validating pharmacological disruption of protein-protein interactions by acceptor photobleaching FRET imaging.
    Roszik J; Tóth G; Szöllősi J; Vereb G
    Methods Mol Biol; 2013; 986():165-78. PubMed ID: 23436412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy.
    Fazekas Z; Petrás M; Fábián A; Pályi-Krekk Z; Nagy P; Damjanovich S; Vereb G; Szöllosi J
    Cytometry A; 2008 Mar; 73(3):209-19. PubMed ID: 18044751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.
    Chial HJ; Lenart P; Chen YQ
    PLoS One; 2010 Aug; 5(8):e12471. PubMed ID: 20814572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coclustering of ErbB1 and ErbB2 revealed by FRET-sensitized acceptor bleaching.
    Szabó A; Szöllosi J; Nagy P
    Biophys J; 2010 Jul; 99(1):105-14. PubMed ID: 20655838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells.
    Clayton AH; Klonis N; Cody SH; Nice EC
    Eur Biophys J; 2005 Feb; 34(1):82-90. PubMed ID: 15232659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometric FRET analysis of ErbB receptor tyrosine kinase interaction.
    Diermeier-Daucher S; Brockhoff G
    Curr Protoc Cytom; 2008 Jul; Chapter 12():Unit12.14. PubMed ID: 18770646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photobleaching and Sensitized Emission-Based Methods for the Detection of Förster Resonance Energy Transfer.
    Zimmermann T
    Methods Mol Biol; 2019; 2040():235-274. PubMed ID: 31432483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FRAP and FRET methods to study nuclear receptors in living cells.
    van Royen ME; Dinant C; Farla P; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 505():69-96. PubMed ID: 19117140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting protein-protein interactions with CFP-YFP FRET by acceptor photobleaching.
    Karpova T; McNally JG
    Curr Protoc Cytom; 2006 Feb; Chapter 12():Unit12.7. PubMed ID: 18770833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring FRET in flow cytometry and microscopy.
    Nagy P; Vereb G; Damjanovich S; Mátyus L; Szöllõsi J
    Curr Protoc Cytom; 2006 Nov; Chapter 12():Unit12.8. PubMed ID: 18770834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy.
    Wang L; Wang Y; Ragauskas AJ
    Analyst; 2012 Mar; 137(6):1319-24. PubMed ID: 22311108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging protein-protein interactions by Förster resonance energy transfer (FRET) microscopy in live cells.
    Brzostowski JA; Meckel T; Hong J; Chen A; Jin T
    Curr Protoc Protein Sci; 2009 Apr; Chapter 19():19.5.1-19.5.12. PubMed ID: 19365789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation.
    Diermeier S; Horváth G; Knuechel-Clarke R; Hofstaedter F; Szöllosi J; Brockhoff G
    Exp Cell Res; 2005 Apr; 304(2):604-19. PubMed ID: 15748904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating protein-protein interactions in the plant endomembrane system using multiphoton-induced FRET-FLIM.
    Schoberer J; Botchway SW
    Methods Mol Biol; 2014; 1209():81-95. PubMed ID: 25117276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.