These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23436419)

  • 1. Genetically engineered animal models for in vivo target identification and validation in oncology.
    Texidó G
    Methods Mol Biol; 2013; 986():281-305. PubMed ID: 23436419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo target validation by inducible RNAi in human xenograft mouse models.
    Mazzoletti M; Texidó G
    Methods Mol Biol; 2013; 986():325-37. PubMed ID: 23436421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer.
    Yano J; Hirabayashi K; Nakagawa S; Yamaguchi T; Nogawa M; Kashimori I; Naito H; Kitagawa H; Ishiyama K; Ohgi T; Irimura T
    Clin Cancer Res; 2004 Nov; 10(22):7721-6. PubMed ID: 15570006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA interference screening for the discovery of oncology targets.
    Quon K; Kassner PD
    Expert Opin Ther Targets; 2009 Sep; 13(9):1027-35. PubMed ID: 19650760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous and genetically engineered animal models; use in preclinical cancer drug development.
    Hansen K; Khanna C
    Eur J Cancer; 2004 Apr; 40(6):858-80. PubMed ID: 15120042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The path to oncology drug target validation: an industry perspective.
    Cortés-Cros M; Schmelzle T; Stucke VM; Hofmann F
    Methods Mol Biol; 2013; 986():3-13. PubMed ID: 23436402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically engineered models have advantages over xenografts for preclinical studies.
    Becher OJ; Holland EC
    Cancer Res; 2006 Apr; 66(7):3355-8, discussion 3358-9. PubMed ID: 16585152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging approaches in molecular profiling affecting oncology drug discovery.
    Friend SH
    Cold Spring Harb Symp Quant Biol; 2005; 70():445-8. PubMed ID: 16869782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contemporary pre-clinical development of anticancer agents--what are the optimal preclinical models?
    Damia G; D'Incalci M
    Eur J Cancer; 2009 Nov; 45(16):2768-81. PubMed ID: 19762228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The challenge of selecting the 'right' in vivo oncology pharmacology model.
    Firestone B
    Curr Opin Pharmacol; 2010 Aug; 10(4):391-6. PubMed ID: 20634135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voreloxin, formerly SNS-595, has potent activity against a broad panel of cancer cell lines and in vivo tumor models.
    Hoch U; Lynch J; Sato Y; Kashimoto S; Kajikawa F; Furutani Y; Silverman JA
    Cancer Chemother Pharmacol; 2009 Jun; 64(1):53-65. PubMed ID: 18931998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target validation using RNA interference in solid tumors.
    Aharinejad S; Sioud M; Lucas T; Abraham D
    Methods Mol Biol; 2007; 361():227-38. PubMed ID: 17172715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preclinical in vitro models from genetically engineered mice for breast and colon cancer (Review).
    Telang N; Katdare M
    Oncol Rep; 2011 May; 25(5):1195-201. PubMed ID: 21399881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells.
    Yang B; Wu X; Mao Y; Bao W; Gao L; Zhou P; Xie R; Zhou L; Zhu J
    Neurosurgery; 2009 Sep; 65(3):610-24; discussion 624. PubMed ID: 19687708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of telomerase and survivin as anticancer therapeutic targets using ribozymes and small-interfering RNAs.
    Zaffaroni N; Pennati M; Folini M
    Methods Mol Biol; 2007; 361():239-63. PubMed ID: 17172716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthotopic metastatic (MetaMouse) models for discovery and development of novel chemotherapy.
    Hoffman RM
    Methods Mol Med; 2005; 111():297-322. PubMed ID: 15911987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of molecularly targeted anticancer therapies: an Eli Lilly and Company perspective.
    Perry WL; Weitzman A
    Clin Adv Hematol Oncol; 2005 Mar; 3(3):199-202, 237-8. PubMed ID: 16166991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bradykinin antagonist dimer, CU201, inhibits the growth of human lung cancer cell lines in vitro and in vivo and produces synergistic growth inhibition in combination with other antitumor agents.
    Chan DC; Gera L; Stewart JM; Helfrich B; Zhao TL; Feng WY; Chan KK; Covey JM; Bunn PA
    Clin Cancer Res; 2002 May; 8(5):1280-7. PubMed ID: 12006549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of retinoic acid on metastasis and its related proteins in gastric cancer cells in vivo and in vitro.
    Wu Q; Chen YQ; Chen ZM; Chen F; Su WJ
    Acta Pharmacol Sin; 2002 Sep; 23(9):835-41. PubMed ID: 12230954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using large-scale RNAi screens to identify novel drug targets for cancer.
    Nijwening JH; Beijersbergen RL
    IDrugs; 2010 Nov; 13(11):772-7. PubMed ID: 21046524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.