These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23436421)

  • 1. In vivo target validation by inducible RNAi in human xenograft mouse models.
    Mazzoletti M; Texidó G
    Methods Mol Biol; 2013; 986():325-37. PubMed ID: 23436421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically engineered animal models for in vivo target identification and validation in oncology.
    Texidó G
    Methods Mol Biol; 2013; 986():281-305. PubMed ID: 23436419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new inducible RNAi xenograft model for assessing the staged tumor response to mTOR silencing.
    Ke N; Zhou D; Chatterton JE; Liu G; Chionis J; Zhang J; Tsugawa L; Lynn R; Yu D; Meyhack B; Wong-Staal F; Li QX
    Exp Cell Res; 2006 Sep; 312(15):2726-34. PubMed ID: 16765945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo.
    Li L; Lin X; Staver M; Shoemaker A; Semizarov D; Fesik SW; Shen Y
    Cancer Res; 2005 Aug; 65(16):7249-58. PubMed ID: 16103076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target validation in mice by constitutive and conditional RNAi.
    Kleinhammer A; Wurst W; Kühn R
    Methods Mol Biol; 2013; 986():307-23. PubMed ID: 23436420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells.
    Yang B; Wu X; Mao Y; Bao W; Gao L; Zhou P; Xie R; Zhou L; Zhu J
    Neurosurgery; 2009 Sep; 65(3):610-24; discussion 624. PubMed ID: 19687708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation and characterization of a xenograft model for human cervical cancer.
    Hoffmann C; Bachran C; Stanke J; Elezkurtaj S; Kaufmann AM; Fuchs H; Loddenkemper C; Schneider A; Cichon G
    Gynecol Oncol; 2010 Jul; 118(1):76-80. PubMed ID: 20441999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically engineered models have advantages over xenografts for preclinical studies.
    Becher OJ; Holland EC
    Cancer Res; 2006 Apr; 66(7):3355-8, discussion 3358-9. PubMed ID: 16585152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The challenge of selecting the 'right' in vivo oncology pharmacology model.
    Firestone B
    Curr Opin Pharmacol; 2010 Aug; 10(4):391-6. PubMed ID: 20634135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. siRNAs in drug discovery: target validation and beyond.
    Natt F
    Curr Opin Mol Ther; 2007 Jun; 9(3):242-7. PubMed ID: 17608022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triptolide augments the effects of 5-lipoxygenase RNA interference in suppressing pancreatic tumor growth in a xenograft mouse model.
    Ding X; Zhou X; Zhang H; Qing J; Qiang H; Zhou G
    Cancer Chemother Pharmacol; 2012 Jan; 69(1):253-61. PubMed ID: 21713446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development.
    Kelland LR
    Eur J Cancer; 2004 Apr; 40(6):827-36. PubMed ID: 15120038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing's sarcoma growth in a xenograft mouse model.
    Guan H; Zhou Z; Wang H; Jia SF; Liu W; Kleinerman ES
    Clin Cancer Res; 2005 Apr; 11(7):2662-9. PubMed ID: 15814647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor inhibition by genomically integrated inducible RNAi-cassettes.
    Kappel S; Matthess Y; Zimmer B; Kaufmann M; Strebhardt K
    Nucleic Acids Res; 2006; 34(16):4527-36. PubMed ID: 16945954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA interference-mediated validation of genes involved in telomere maintenance and evasion of apoptosis as cancer therapeutic targets.
    Folini M; Pennati M; Zaffaroni N
    Methods Mol Biol; 2009; 487():303-30. PubMed ID: 19301654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preclinical models in oncology].
    Vrignaud P
    Bull Cancer; 2011 Nov; 98(11):1355-61. PubMed ID: 22023796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short hairpin RNA-expressing oncolytic adenovirus-mediated inhibition of IL-8: effects on antiangiogenesis and tumor growth inhibition.
    Yoo JY; Kim JH; Kim J; Huang JH; Zhang SN; Kang YA; Kim H; Yun CO
    Gene Ther; 2008 May; 15(9):635-51. PubMed ID: 18273054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse embryonic stem cells as a model genetic system to dissect and exploit the RNA interference machinery.
    Muljo SA; Kanellopoulou C
    Methods Mol Biol; 2006; 342():57-72. PubMed ID: 16957367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish xenografts as a tool for in vivo studies on human cancer.
    Konantz M; Balci TB; Hartwig UF; Dellaire G; André MC; Berman JN; Lengerke C
    Ann N Y Acad Sci; 2012 Aug; 1266():124-37. PubMed ID: 22901264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New models for cancer research: human cancer stem cell xenografts.
    Baiocchi M; Biffoni M; Ricci-Vitiani L; Pilozzi E; De Maria R
    Curr Opin Pharmacol; 2010 Aug; 10(4):380-4. PubMed ID: 20561817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.