BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23436680)

  • 1. Protein transduction domain-containing microemulsions as cutaneous delivery systems for an anticancer agent.
    Pepe D; McCall M; Zheng H; Lopes LB
    J Pharm Sci; 2013 May; 102(5):1476-87. PubMed ID: 23436680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel.
    Pepe D; Carvalho VF; McCall M; de Lemos DP; Lopes LB
    Int J Nanomedicine; 2016; 11():2009-19. PubMed ID: 27274232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cutaneous delivery of α-tocopherol and lipoic acid using microemulsions: influence of composition and charge.
    Cichewicz A; Pacleb C; Connors A; Hass MA; Lopes LB
    J Pharm Pharmacol; 2013 Jun; 65(6):817-26. PubMed ID: 23647675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamellar liquid crystalline phases for cutaneous delivery of Paclitaxel: impact of the monoglyceride.
    Hosmer JM; Steiner AA; Lopes LB
    Pharm Res; 2013 Mar; 30(3):694-706. PubMed ID: 23135821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microemulsions containing medium-chain glycerides as transdermal delivery systems for hydrophilic and hydrophobic drugs.
    Hosmer J; Reed R; Bentley MV; Nornoo A; Lopes LB
    AAPS PharmSciTech; 2009; 10(2):589-96. PubMed ID: 19440842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of Non-aqueous Microemulsions to Improve the Delivery of Lipophilic Drugs to the Skin.
    Carvalho VF; de Lemos DP; Vieira CS; Migotto A; Lopes LB
    AAPS PharmSciTech; 2017 Jul; 18(5):1739-1749. PubMed ID: 27757922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of internal structure and composition of liquid crystalline phases on topical delivery of paclitaxel.
    Hosmer JM; Shin SH; Nornoo A; Zheng H; Lopes LB
    J Pharm Sci; 2011 Apr; 100(4):1444-55. PubMed ID: 20957759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decylglucoside-based microemulsions for cutaneous localization of lycopene and ascorbic acid.
    Pepe D; Phelps J; Lewis K; Dujack J; Scarlett K; Jahan S; Bonnier E; Milic-Pasetto T; Hass MA; Lopes LB
    Int J Pharm; 2012 Sep; 434(1-2):420-8. PubMed ID: 22692080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and evaluation of microemulsion formulations of naproxen for dermal delivery.
    Ustündağ Okur N; Yavaşoğlu A; Karasulu HY
    Chem Pharm Bull (Tokyo); 2014; 62(2):135-43. PubMed ID: 24492583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.
    Nornoo AO; Zheng H; Lopes LB; Johnson-Restrepo B; Kannan K; Reed R
    Eur J Pharm Biopharm; 2009 Feb; 71(2):310-7. PubMed ID: 18793723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkyl polyglucoside vs. ethoxylated surfactant-based microemulsions as vehicles for two poorly water-soluble drugs: physicochemical characterization and in vivo skin performance.
    Pajić NZB; Todosijević MN; Vuleta GM; Cekić ND; Dobričić VD; Vučen SR; Čalija BR; Lukić MŽ; Ilić TM; Savić SD
    Acta Pharm; 2017 Dec; 67(4):415-439. PubMed ID: 29337676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole.
    Zhang J; Michniak-Kohn BB
    Int J Pharm; 2018 Jan; 536(1):345-352. PubMed ID: 29170117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transdermal delivery of capsaicin derivative-sodium nonivamide acetate using microemulsions as vehicles.
    Huang YB; Lin YH; Lu TM; Wang RJ; Tsai YH; Wu PC
    Int J Pharm; 2008 Feb; 349(1-2):206-11. PubMed ID: 17766068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition.
    El Maghraby GM
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):595-600. PubMed ID: 19892531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in the use of microemulsions for transdermal and dermal drug delivery.
    Ita K
    Pharm Dev Technol; 2017 Jun; 22(4):467-475. PubMed ID: 26931453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different water/oil microemulsions containing diclofenac sodium: preparation, characterization, release rate, and skin irritation studies.
    Kantarci G; Ozgüney I; Karasulu HY; Arzik S; Güneri T
    AAPS PharmSciTech; 2007 Nov; 8(4):E91. PubMed ID: 18181551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the composition of monoacyl phosphatidylcholine based microemulsions on the dermal delivery of flufenamic acid.
    Hoppel M; Ettl H; Holper E; Valenta C
    Int J Pharm; 2014 Nov; 475(1-2):156-62. PubMed ID: 25178824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transdermal Delivery of Compounds with Different Lipophilicity and Molecular Weight from W/O Microemulsions Analyzed by UPLC-QTOF/ MS and LC-MS/MS.
    Lin H; Michniak-Kohn B; Xia Z; Xu L; Kang Q; Chen C; Ma S; Wu Q
    Curr Drug Deliv; 2018; 15(7):1009-1019. PubMed ID: 29268684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo.
    Sintov AC; Shapiro L
    J Control Release; 2004 Mar; 95(2):173-83. PubMed ID: 14980766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transdermal delivery enhancement of carvacrol from Origanum vulgare L. essential oil by microemulsion.
    Laothaweerungsawat N; Neimkhum W; Anuchapreeda S; Sirithunyalug J; Chaiyana W
    Int J Pharm; 2020 Apr; 579():119052. PubMed ID: 31982557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.