These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 23436682)
1. Antedependence models for nonstationary categorical longitudinal data with ignorable missingness: likelihood-based inference. Xie Y; Zimmerman DL Stat Med; 2013 Aug; 32(19):3274-89. PubMed ID: 23436682 [TBL] [Abstract][Full Text] [Related]
2. A multistate Markov chain model for longitudinal, categorical quality-of-life data subject to non-ignorable missingness. Cole BF; Bonetti M; Zaslavsky AM; Gelber RD Stat Med; 2005 Aug; 24(15):2317-34. PubMed ID: 15977292 [TBL] [Abstract][Full Text] [Related]
3. Longitudinal data analysis with non-ignorable missing data. Tseng CH; Elashoff R; Li N; Li G Stat Methods Med Res; 2016 Feb; 25(1):205-20. PubMed ID: 22637472 [TBL] [Abstract][Full Text] [Related]
5. A penalized EM algorithm incorporating missing data mechanism for Gaussian parameter estimation. Chen LS; Prentice RL; Wang P Biometrics; 2014 Jun; 70(2):312-22. PubMed ID: 24471933 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Alzheimer's disease progression based on clinical dementia rating scale with missing responses and covariates. Das K; Rana S; Roy S; J Biopharm Stat; 2018; 28(5):893-908. PubMed ID: 29173033 [TBL] [Abstract][Full Text] [Related]
7. The first-order Markov conditional linear expectation approach for analysis of longitudinal data. Bender S; Gamerman V; Reese PP; Gray DL; Li Y; Shults J Stat Med; 2021 Apr; 40(8):1972-1988. PubMed ID: 33533085 [TBL] [Abstract][Full Text] [Related]
8. A hidden Markov model for continuous longitudinal data with missing responses and dropout. Pandolfi S; Bartolucci F; Pennoni F Biom J; 2023 Jun; 65(5):e2200016. PubMed ID: 37035989 [TBL] [Abstract][Full Text] [Related]
9. Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates. Parzen M; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Troxel A Stat Med; 2006 Aug; 25(16):2784-96. PubMed ID: 16345018 [TBL] [Abstract][Full Text] [Related]
11. Inference methods for saturated models in longitudinal clinical trials with incomplete binary data. Song JX Pharm Stat; 2006; 5(4):295-304. PubMed ID: 17128429 [TBL] [Abstract][Full Text] [Related]
12. Markov transition models for binary repeated measures with ignorable and nonignorable missing values. Xiaowei Yang ; Shoptaw S; Kun Nie ; Juanmei Liu ; Belin TR Stat Methods Med Res; 2007 Aug; 16(4):347-64. PubMed ID: 17715161 [TBL] [Abstract][Full Text] [Related]
13. Continuous Time Nonstationary Correlation Models for Sparse Longitudinal Data. Cheruvu VK; Albert JM Model Assist Stat Appl; 2019; 14(3):215-226. PubMed ID: 31649493 [TBL] [Abstract][Full Text] [Related]
14. A transition model for quality-of-life data with non-ignorable non-monotone missing data. Liao K; Freres DR; Troxel AB Stat Med; 2012 Dec; 31(28):3444-66. PubMed ID: 22826030 [TBL] [Abstract][Full Text] [Related]
15. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial. Li N; Elashoff RM; Li G; Saver J Stat Med; 2010 Feb; 29(5):546-57. PubMed ID: 19943331 [TBL] [Abstract][Full Text] [Related]
16. Non-homogeneous Markov process models with informative observations with an application to Alzheimer's disease. Chen B; Zhou XH Biom J; 2011 May; 53(3):444-63. PubMed ID: 21491475 [TBL] [Abstract][Full Text] [Related]
17. A weighted combination of pseudo-likelihood estimators for longitudinal binary data subject to non-ignorable non-monotone missingness. Troxel AB; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Sinha D; Molenberghs G Stat Med; 2010 Jun; 29(14):1511-21. PubMed ID: 20205269 [TBL] [Abstract][Full Text] [Related]
18. Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease. Li K; Luo S Stat Med; 2017 Sep; 36(22):3560-3572. PubMed ID: 28664662 [TBL] [Abstract][Full Text] [Related]
19. Non-response models for the analysis of non-monotone ignorable missing data. Robins JM; Gill RD Stat Med; 1997 Jan 15-Feb 15; 16(1-3):39-56. PubMed ID: 9004382 [TBL] [Abstract][Full Text] [Related]
20. Obtaining marginal estimates from conditional categorical repeated measurements models with missing data. Lindsey JK Stat Med; 2000 Mar; 19(6):801-9. PubMed ID: 10734284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]