These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23436742)

  • 1. Thermal and electrical conduction in ultrathin metallic films: 7 nm down to sub-nanometer thickness.
    Lin H; Xu S; Wang X; Mei N
    Small; 2013 Aug; 9(15):2585-94. PubMed ID: 23436742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and electrical conduction in 6.4 nm thin gold films.
    Lin H; Xu S; Li C; Dong H; Wang X
    Nanoscale; 2013 Jun; 5(11):4652-6. PubMed ID: 23604205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transport and bulk-like behavior of Wiedemann-Franz law for sub-7 nm-thin iridium films on silkworm silk.
    Lin H; Xu S; Zhang YQ; Wang X
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11341-7. PubMed ID: 24988039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Thermal and Electrical Transport in 6.4 nm Au Films on Polyimide Film and Fiber Substrates.
    Lin H; Kou A; Cheng J; Dong H; Xu S; Zhang J; Luo S
    Sci Rep; 2020 Jun; 10(1):9165. PubMed ID: 32514063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms.
    Dong L; Wei G; Cheng T; Tang J; Ye X; Hong M; Hu L; Yin R; Zhao S; Cai G; Shi Y; Pan B; Jiang C; Ren F
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8886-8896. PubMed ID: 31971777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.
    Yoneoka S; Lee J; Liger M; Yama G; Kodama T; Gunji M; Provine J; Howe RT; Goodson KE; Kenny TW
    Nano Lett; 2012 Feb; 12(2):683-6. PubMed ID: 22224582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation.
    Jaramillo-Fernandez J; Ordonez-Miranda J; Ollier E; Volz S
    Phys Chem Chem Phys; 2015 Mar; 17(12):8125-37. PubMed ID: 25729791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large Enhancement of Thermal Conductivity and Lorenz Number in Topological Insulator Thin Films.
    Luo Z; Tian J; Huang S; Srinivasan M; Maassen J; Chen YP; Xu X
    ACS Nano; 2018 Feb; 12(2):1120-1127. PubMed ID: 29361229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical and thermal conductivities of polycrystalline platinum nanowires.
    Wang J; Yu H; Walbert T; Antoni M; Wang C; Xi W; Muench F; Yang J; Chen Y; Ensinger W
    Nanotechnology; 2019 Nov; 30(45):455706. PubMed ID: 31370046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point.
    Zhu YF; Lang XY; Zheng WT; Jiang Q
    ACS Nano; 2010 Jul; 4(7):3781-8. PubMed ID: 20557119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical and thermal conduction in ultra-thin freestanding atomic layer deposited W nanobridges.
    Eigenfeld NT; Gertsch JC; Skidmore GD; George SM; Bright VM
    Nanoscale; 2015 Nov; 7(42):17923-8. PubMed ID: 26463738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of microstructure on thermal conductivity of Cu, Ag thin films.
    Ryu S; Juhng W; Kim Y
    J Nanosci Nanotechnol; 2010 May; 10(5):3406-11. PubMed ID: 20358967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of electrical and thermal conduction in single silver nanowire.
    Cheng Z; Liu L; Xu S; Lu M; Wang X
    Sci Rep; 2015 Jun; 5():10718. PubMed ID: 26035288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-30 nm thick plasmonic films and structures with ultralow loss.
    Teo EJ; Toyoda N; Yang C; Wang B; Zhang N; Bettiol AA; Teng JH
    Nanoscale; 2014 Mar; 6(6):3243-9. PubMed ID: 24504045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical Properties of Ultrathin Platinum Films by Plasma-Enhanced Atomic Layer Deposition.
    Kim HJK; Kaplan KE; Schindler P; Xu S; Winterkorn MM; Heinz DB; English TS; Provine J; Prinz FB; Kenny TW
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9594-9599. PubMed ID: 30707831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Thickness of Single-Phase Antimony and Tellurium Thin Films on Their Thermal Conductivities.
    Park NW; Park SI; Lee SK
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6729-33. PubMed ID: 26716236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness.
    Park NW; Lee WY; Kim JA; Song K; Lim H; Kim WD; Yoon SG; Lee SK
    Nanoscale Res Lett; 2014 Feb; 9(1):96. PubMed ID: 24571956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Record Low Thermal Conductivity of Polycrystalline MoS
    Sledzinska M; Quey R; Mortazavi B; Graczykowski B; Placidi M; Saleta Reig D; Navarro-Urrios D; Alzina F; Colombo L; Roche S; Sotomayor Torres CM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37905-37911. PubMed ID: 28956443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films.
    Cheaito R; Duda JC; Beechem TE; Hattar K; Ihlefeld JF; Medlin DL; Rodriguez MA; Campion MJ; Piekos ES; Hopkins PE
    Phys Rev Lett; 2012 Nov; 109(19):195901. PubMed ID: 23215405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.