These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23437198)

  • 1. Global analysis of the human pathophenotypic similarity gene network merges disease module components.
    Reyes-Palomares A; Rodríguez-López R; Ranea JA; Sánchez-Jiménez F; Medina MA
    PLoS One; 2013; 8(2):e56653. PubMed ID: 23437198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network.
    Yao X; Hao H; Li Y; Li S
    BMC Syst Biol; 2011 May; 5():79. PubMed ID: 21599985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
    Le DH; Dao LTM
    J Mol Biol; 2018 Jul; 430(15):2219-2230. PubMed ID: 29758261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing an integrated gene similarity network for the identification of disease genes.
    Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human disease network in terms of dysfunctional regulatory mechanisms.
    Yang J; Wu SJ; Dai WT; Li YX; Li YY
    Biol Direct; 2015 Oct; 10():60. PubMed ID: 26450611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing a gene semantic similarity network for the inference of disease genes.
    Jiang R; Gan M; He P
    BMC Syst Biol; 2011; 5 Suppl 2(Suppl 2):S2. PubMed ID: 22784573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction: Global Analysis of the Human Pathophenotypic Similarity Gene Network Merges Disease Module Components.
    Reyes-Palomares A; Rodríguez-López R; Ranea JA; Sánchez-Jiménez F; Medina MA
    PLoS One; 2013; 8(6):. PubMed ID: 23825517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PanoromiX: a time-course network medicine platform integrating molecular assays and pathophenotypic data.
    Yang R; Watson D; Williams J; Kumar R; Campbell R; Mudunuri U; Hammamieh R; Jett M
    BMC Bioinformatics; 2018 Nov; 19(1):458. PubMed ID: 30497372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel candidate disease genes prioritization method based on module partition and rank fusion.
    Chen X; Yan GY; Liao XP
    OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach.
    Peng J; Zhang X; Hui W; Lu J; Li Q; Liu S; Shang X
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):18. PubMed ID: 29560823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks.
    Peng J; Uygun S; Kim T; Wang Y; Rhee SY; Chen J
    BMC Bioinformatics; 2015 Feb; 16():44. PubMed ID: 25886899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of network module identification across complex diseases.
    Choobdar S; Ahsen ME; Crawford J; Tomasoni M; Fang T; Lamparter D; Lin J; Hescott B; Hu X; Mercer J; Natoli T; Narayan R; ; Subramanian A; Zhang JD; Stolovitzky G; Kutalik Z; Lage K; Slonim DK; Saez-Rodriguez J; Cowen LJ; Bergmann S; Marbach D
    Nat Methods; 2019 Sep; 16(9):843-852. PubMed ID: 31471613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
    Cheng L; Jiang Y; Ju H; Sun J; Peng J; Zhou M; Hu Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):919. PubMed ID: 29363423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network.
    Jiang JQ; Dress AW; Chen M
    J Integr Bioinform; 2010 Nov; 7(2):. PubMed ID: 21098881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring disease comorbidity in a module-module interaction network.
    Hwang S; Lee T; Yoon Y
    J Bioinform Comput Biol; 2020 Apr; 18(2):2050010. PubMed ID: 32404015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.