These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23437276)

  • 1. Cognitive performance and heart rate variability: the influence of fitness level.
    Luque-Casado A; Zabala M; Morales E; Mateo-March M; Sanabria D
    PLoS One; 2013; 8(2):e56935. PubMed ID: 23437276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart rate variability and cognitive processing: The autonomic response to task demands.
    Luque-Casado A; Perales JC; Cárdenas D; Sanabria D
    Biol Psychol; 2016 Jan; 113():83-90. PubMed ID: 26638762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient autonomic responses during sustained attention in high and low fit young adults.
    Luque-Casado A; Perakakis P; Ciria LF; Sanabria D
    Sci Rep; 2016 Jun; 6():27556. PubMed ID: 27271980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in Sustained Attention Capacity as a Function of Aerobic Fitness.
    Luque-Casado A; Perakakis P; Hillman CH; Kao SC; Llorens F; Guerra P; Sanabria D
    Med Sci Sports Exerc; 2016 May; 48(5):887-95. PubMed ID: 26694844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic fitness and response variability in preadolescent children performing a cognitive control task.
    Wu CT; Pontifex MB; Raine LB; Chaddock L; Voss MW; Kramer AF; Hillman CH
    Neuropsychology; 2011 May; 25(3):333-41. PubMed ID: 21443340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between sustained attention and aerobic fitness in a group of young adults.
    Ciria LF; Perakakis P; Luque-Casado A; Morato C; Sanabria D
    PeerJ; 2017; 5():e3831. PubMed ID: 28975054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relation of aerobic fitness to cognitive control and heart rate variability: a neurovisceral integration study.
    Alderman BL; Olson RL
    Biol Psychol; 2014 May; 99():26-33. PubMed ID: 24560874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new semantic vigilance task: vigilance decrement, workload, and sensitivity to dual-task costs.
    Epling SL; Russell PN; Helton WS
    Exp Brain Res; 2016 Jan; 234(1):133-9. PubMed ID: 26403293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of Event Rate on a Cognitive Vigilance Task.
    Claypoole VL; Dever DA; Denues KL; Szalma JL
    Hum Factors; 2019 May; 61(3):440-450. PubMed ID: 30071172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associations between accommodative dynamics, heart rate variability and behavioural performance during sustained attention: A test-retest study.
    Redondo B; Vera J; Luque-Casado A; García-Ramos A; Jiménez R
    Vision Res; 2019 Oct; 163():24-32. PubMed ID: 31374236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Executive and arousal vigilance decrement in the context of the attentional networks: The ANTI-Vea task.
    Luna FG; Marino J; Roca J; Lupiáñez J
    J Neurosci Methods; 2018 Aug; 306():77-87. PubMed ID: 29791865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining the relationship between skilled music training and attention.
    Wang X; Ossher L; Reuter-Lorenz PA
    Conscious Cogn; 2015 Nov; 36():169-79. PubMed ID: 26160137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustaining attention for a prolonged period of time increases temporal variability in cortical responses.
    Reteig LC; van den Brink RL; Prinssen S; Cohen MX; Slagter HA
    Cortex; 2019 Aug; 117():16-32. PubMed ID: 30925309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitness and gender-related differences in heart period variability.
    Rossy LA; Thayer JF
    Psychosom Med; 1998; 60(6):773-81. PubMed ID: 9847039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mental engagement during cognitive and psychomotor tasks: Effects of task type, processing demands, and practice.
    Pendleton DM; Sakalik ML; Moore ML; Tomporowski PD
    Int J Psychophysiol; 2016 Nov; 109():124-131. PubMed ID: 27585951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation of aerobic fitness to neuroelectric indices of cognitive and motor task preparation.
    Kamijo K; O'Leary KC; Pontifex MB; Themanson JR; Hillman CH
    Psychophysiology; 2010 Sep; 47(5):814-21. PubMed ID: 20345598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher cardiovascular fitness level is associated to better cognitive dual-task performance in Master Athletes: Mediation by cardiac autonomic control.
    Dupuy O; Bosquet L; Fraser SA; Labelle V; Bherer L
    Brain Cogn; 2018 Aug; 125():127-134. PubMed ID: 29990702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children.
    Pontifex MB; Raine LB; Johnson CR; Chaddock L; Voss MW; Cohen NJ; Kramer AF; Hillman CH
    J Cogn Neurosci; 2011 Jun; 23(6):1332-45. PubMed ID: 20521857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A higher illuminance induces alertness even during office hours: findings on subjective measures, task performance and heart rate measures.
    Smolders KC; de Kort YA; Cluitmans PJ
    Physiol Behav; 2012 Aug; 107(1):7-16. PubMed ID: 22564492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic fitness and neurocognitive function in healthy preadolescent children.
    Hillman CH; Castelli DM; Buck SM
    Med Sci Sports Exerc; 2005 Nov; 37(11):1967-74. PubMed ID: 16286868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.