These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23437300)

  • 21. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.
    Prevéy JS; Seastedt TR
    Oecologia; 2015 Nov; 179(3):765-75. PubMed ID: 26227366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert.
    Clark JS; Campbell JH; Grizzle H; Acosta-Martìnez V; Zak JC
    Microb Ecol; 2009 Feb; 57(2):248-60. PubMed ID: 19067031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of elevated CO₂, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland.
    Xu Z; Shimizu H; Ito S; Yagasaki Y; Zou C; Zhou G; Zheng Y
    Planta; 2014 Feb; 239(2):421-35. PubMed ID: 24463932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What functional strategies drive drought survival and recovery of perennial species from upland grassland?
    Zwicke M; Picon-Cochard C; Morvan-Bertrand A; Prud'homme MP; Volaire F
    Ann Bot; 2015 Nov; 116(6):1001-15. PubMed ID: 25851134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses.
    Balachowski JA; Bristiel PM; Volaire FA
    Ann Bot; 2016 Aug; 118(2):357-68. PubMed ID: 27325898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precipitation frequency alters peatland ecosystem structure and CO
    Radu DD; Duval TP
    Glob Chang Biol; 2018 May; 24(5):2051-2065. PubMed ID: 29345034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant community responses to increased precipitation and belowground litter addition: Evidence from a 5-year semiarid grassland experiment.
    Chen H; Ma L; Xin X; Liu J; Wang R
    Ecol Evol; 2018 May; 8(9):4587-4597. PubMed ID: 29760899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland.
    Bell CW; Tissue DT; Loik ME; Wallenstein MD; Acosta-Martinez V; Erickson RA; Zak JC
    Glob Chang Biol; 2014 May; 20(5):1657-73. PubMed ID: 24115607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert.
    Robertson TR; Zak JC; Tissue DT
    Oecologia; 2010 Jan; 162(1):185-97. PubMed ID: 19756763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overcompensation of ecosystem productivity following sustained extreme drought in a semiarid grassland.
    Ru J; Wan S; Hui D; Song J
    Ecology; 2023 Apr; 104(4):e3997. PubMed ID: 36799428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?
    Verburg PS; Young AC; Stevenson BA; Glanzmann I; Arnone JA; Marion GM; Holmes C; Nowak RS
    Glob Chang Biol; 2013 Mar; 19(3):948-56. PubMed ID: 23504850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soil microbial responses to temporal variations of moisture and temperature in a chihuahuan desert grassland.
    Bell C; McIntyre N; Cox S; Tissue D; Zak J
    Microb Ecol; 2008 Jul; 56(1):153-67. PubMed ID: 18246293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Winter photosynthetic activity of twenty temperate semi-desert sand grassland species.
    Tuba Z; Csintalan Z; Szente K; Nagy Z; Fekete G; Larcher W; Lichtenthaler HK
    J Plant Physiol; 2008 Sep; 165(14):1438-54. PubMed ID: 18346813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imposing antecedent global change conditions rapidly alters plant community composition in a mixed-grass prairie.
    Concilio AL; Nippert JB; Ehrenfeucht S; Cherwin K; Seastedt TR
    Oecologia; 2016 Nov; 182(3):899-911. PubMed ID: 27405299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Moderately prolonged dry intervals between precipitation events promote production in Leymus chinensis in a semi-arid grassland of Northeast China.
    Zhang J; Shen X; Mu B; Shi Y; Yang Y; Wu X; Mu C; Wang J
    BMC Plant Biol; 2021 Mar; 21(1):147. PubMed ID: 33743593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland.
    Ru J; Zhou Y; Hui D; Zheng M; Wan S
    Glob Chang Biol; 2018 Mar; 24(3):1001-1011. PubMed ID: 29034565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermography captures the differential sensitivity of dryland functional types to changes in rainfall event timing and magnitude.
    Javadian M; Scott RL; Biederman JA; Zhang F; Fisher JB; Reed SC; Potts DL; Villarreal ML; Feldman AF; Smith WK
    New Phytol; 2023 Oct; 240(1):114-126. PubMed ID: 37434275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America.
    Vivanco L; Austin AT
    Oecologia; 2006 Nov; 150(1):97-107. PubMed ID: 16917779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The responses of soil and rhizosphere respiration to simulated climatic changes vary by season.
    Suseela V; Dukes JS
    Ecology; 2013 Feb; 94(2):403-13. PubMed ID: 23691659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shifting plant species composition in response to climate change stabilizes grassland primary production.
    Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.