These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23437338)

  • 1. Estimating the intended sound direction of the user: toward an auditory brain-computer interface using out-of-head sound localization.
    Nambu I; Ebisawa M; Kogure M; Yano S; Hokari H; Wada Y
    PLoS One; 2013; 8(2):e57174. PubMed ID: 23437338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of direction of attention using EEG and out-of-head sound localization.
    Ebisawa M; Kogure M; Yano SH; Matsuzaki S; Wada Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7417-20. PubMed ID: 22256053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A portable auditory P300 brain-computer interface with directional cues.
    Käthner I; Ruf CA; Pasqualotto E; Braun C; Birbaumer N; Halder S
    Clin Neurophysiol; 2013 Feb; 124(2):327-38. PubMed ID: 22959257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous multiple-stimulus auditory brain-computer interface with semi-supervised learning and prior probability distribution tuning.
    Ogino M; Hamada N; Mitsukura Y
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317357
    [No Abstract]   [Full Text] [Related]  

  • 5. Decoding spatial attention with EEG and virtual acoustic space.
    Dong Y; Raif KE; Determan SC; Gai Y
    Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Head-related impulse response cues for spatial auditory brain-computer interface.
    Nakaizumi C; Makino S; Rutkowski TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1071-4. PubMed ID: 26736450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel hybrid auditory BCI paradigm combining ASSR and P300.
    Kaongoen N; Jo S
    J Neurosci Methods; 2017 Mar; 279():44-51. PubMed ID: 28109832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of auditory and visual p300 brain-computer interface aptitude.
    Halder S; Hammer EM; Kleih SC; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    PLoS One; 2013; 8(2):e53513. PubMed ID: 23457444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a high-throughput auditory P300-based brain-computer interface.
    Klobassa DS; Vaughan TM; Brunner P; Schwartz NE; Wolpaw JR; Neuper C; Sellers EW
    Clin Neurophysiol; 2009 Jul; 120(7):1252-61. PubMed ID: 19574091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional Neural Networks with 3D Input for P300 Identification in Auditory Brain-Computer Interfaces.
    Carabez E; Sugi M; Nambu I; Wada Y
    Comput Intell Neurosci; 2017; 2017():8163949. PubMed ID: 29250108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Assessment of Sound Localization in Disorders of Consciousness Using a Hybrid Audiovisual Brain-Computer Interface.
    Xiao J; He Y; Yu T; Pan J; Xie Q; Cao C; Zheng H; Huang W; Gu Z; Yu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1422-1432. PubMed ID: 35584066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of training and motivation on auditory P300 brain-computer interface performance.
    Baykara E; Ruf CA; Fioravanti C; Käthner I; Simon N; Kleih SC; Kübler A; Halder S
    Clin Neurophysiol; 2016 Jan; 127(1):379-387. PubMed ID: 26051753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern.
    Borirakarawin M; Punsawad Y
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An auditory brain-computer interface based on selective attention to multiple tone streams.
    Kojima S; Kanoh S
    PLoS One; 2024; 19(5):e0303565. PubMed ID: 38781127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a truly mobile auditory brain-computer interface: exploring the P300 to take away.
    De Vos M; Gandras K; Debener S
    Int J Psychophysiol; 2014 Jan; 91(1):46-53. PubMed ID: 23994208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context.
    Halder S; Leinfelder T; Schulz SM; Kübler A
    Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An auditory brain-computer interface using virtual sound field.
    Gao H; Ouyang M; Zhang D; Hong B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4568-71. PubMed ID: 22255354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.
    Hill NJ; Schölkopf B
    J Neural Eng; 2012 Apr; 9(2):026011. PubMed ID: 22333135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interface with rapid serial multimodal presentation using artificial facial images and voice.
    Onishi A
    Comput Biol Med; 2021 Sep; 136():104685. PubMed ID: 34343888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Performance of an Auditory Brain-Computer Interface Using Virtual Sound Sources by Shortening Stimulus Onset Asynchrony.
    Sugi M; Hagimoto Y; Nambu I; Gonzalez A; Takei Y; Yano S; Hokari H; Wada Y
    Front Neurosci; 2018; 12():108. PubMed ID: 29535602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.