BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23438292)

  • 1. Interactions between multiwall carbon nanotubes and poly(diallyl dimethylammonium) chloride: effect of the presence of a surfactant.
    Kaur P; Shin MS; Joshi A; Kaur N; Sharma N; Park JS; Sekhon SS
    J Phys Chem B; 2013 Mar; 117(11):3161-6. PubMed ID: 23438292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic evidence for pi-pi interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes.
    Yang DQ; Rochette JF; Sacher E
    J Phys Chem B; 2005 Mar; 109(10):4481-4. PubMed ID: 16851521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes.
    Wang D; Lu S; Kulesza PJ; Li CM; De Marco R; Jiang SP
    Phys Chem Chem Phys; 2011 Mar; 13(10):4400-10. PubMed ID: 21249246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane.
    Manesh KM; Kim HT; Santhosh P; Gopalan AI; Lee KP
    Biosens Bioelectron; 2008 Jan; 23(6):771-9. PubMed ID: 17905578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction.
    Wang S; Yu D; Dai L; Chang DW; Baek JB
    ACS Nano; 2011 Aug; 5(8):6202-9. PubMed ID: 21780760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the origin of the positive effects of imidazolium salt on electrocatalytic activity: ionic carbon nanotubes as metal-free electrocatalysts for oxygen reduction reaction.
    Kim YS; Shin JY; Jeon HJ; Cha A; Lee C; Lee SG
    Chem Asian J; 2013 Jan; 8(1):232-7. PubMed ID: 23129532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation.
    Wang S; Jiang SP; Wang X
    Nanotechnology; 2008 Jul; 19(26):265601. PubMed ID: 21828682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant removal with multiwalled carbon nanotubes.
    Gao Q; Chen W; Chen Y; Werner D; Cornelissen G; Xing B; Tao S; Wang X
    Water Res; 2016 Dec; 106():531-538. PubMed ID: 27770729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroreduction of oxygen on gold nanoparticle/PDDA-MWCNT nanocomposites in acid solution.
    Alexeyeva N; Tammeveski K
    Anal Chim Acta; 2008 Jun; 618(2):140-6. PubMed ID: 18513535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures.
    Chen H; Wang Y; Dong S
    Inorg Chem; 2007 Dec; 46(25):10587-93. PubMed ID: 17999489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction.
    Wang S; Yu D; Dai L
    J Am Chem Soc; 2011 Apr; 133(14):5182-5. PubMed ID: 21413707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel-based thin film on multiwalled carbon nanotubes as an efficient bifunctional electrocatalyst for water splitting.
    Yu X; Hua T; Liu X; Yan Z; Xu P; Du P
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15395-402. PubMed ID: 25136924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe-N-modified multi-walled carbon nanotubes for oxygen reduction reaction in acid.
    Byon HR; Suntivich J; Crumlin EJ; Shao-Horn Y
    Phys Chem Chem Phys; 2011 Dec; 13(48):21437-45. PubMed ID: 22045408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the effect of different chemical routes on functionalization of MWCNTs by various groups (-COOH, -SO3H, -PO3H2).
    Kumar P; Park JS; Randhawa P; Sharma S; Shin MS; Sekhon SS
    Nanoscale Res Lett; 2011 Nov; 6(1):583. PubMed ID: 22060257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of carbon nanotube dispersion using surfactants.
    Rastogi R; Kaushal R; Tripathi SK; Sharma AL; Kaur I; Bharadwaj LM
    J Colloid Interface Sci; 2008 Dec; 328(2):421-8. PubMed ID: 18848704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometry-based evaluation and enrichment of multiwalled carbon nanotube dispersions.
    Tiwari MD; Sagar GH; Bellare JR
    Langmuir; 2012 Mar; 28(11):4939-47. PubMed ID: 22356475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coating multi-walled carbon nanotubes with rare-earth complexes by an in situ synthetic method.
    Wu HX; Cao WM; Wang J; Yang H; Yang SP
    Nanotechnology; 2008 Aug; 19(34):345701. PubMed ID: 21730656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a hybrid assembly composed of titanium dioxide nanoparticles and thin multi-walled carbon nanotubes using "click chemistry".
    Yadav SK; Madeshwaran SR; Cho JW
    J Colloid Interface Sci; 2011 Jun; 358(2):471-6. PubMed ID: 21463867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes.
    Oleszczuk P; Xing B
    Chemosphere; 2011 Nov; 85(8):1312-7. PubMed ID: 21890168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase.
    Zhao H; Ju H
    Anal Biochem; 2006 Mar; 350(1):138-44. PubMed ID: 16430853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.