These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23438444)

  • 1. Direct real-time monitoring of stage transitions in graphite intercalation compounds.
    Dimiev AM; Ceriotti G; Behabtu N; Zakhidov D; Pasquali M; Saito R; Tour JM
    ACS Nano; 2013 Mar; 7(3):2773-80. PubMed ID: 23438444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ Raman study of lithium-ion intercalation into microcrystalline graphite.
    Sole C; Drewett NE; Hardwick LJ
    Faraday Discuss; 2014; 172():223-37. PubMed ID: 25427224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra.
    Dimiev AM; Bachilo SM; Saito R; Tour JM
    ACS Nano; 2012 Sep; 6(9):7842-9. PubMed ID: 22880798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stage, intercalant species and expansion technique on exfoliation of graphite intercalation compound into graphene sheets.
    Geng Y; Zheng Q; Kim JK
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1084-91. PubMed ID: 21456143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manifestation of charged and strained graphene layers in the Raman response of graphite intercalation compounds.
    Chacón-Torres JC; Wirtz L; Pichler T
    ACS Nano; 2013 Oct; 7(10):9249-59. PubMed ID: 24025089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure of superconducting KC8 and nonsuperconducting LiC6 graphite intercalation compounds: evidence for a graphene-sheet-driven superconducting state.
    Pan ZH; Camacho J; Upton MH; Fedorov AV; Howard CA; Ellerby M; Valla T
    Phys Rev Lett; 2011 May; 106(18):187002. PubMed ID: 21635120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability.
    Zhao W; Tan PH; Liu J; Ferrari AC
    J Am Chem Soc; 2011 Apr; 133(15):5941-6. PubMed ID: 21434632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia absorption in calcium graphite intercalation compound: in situ neutron diffraction, Raman spectroscopy and magnetization.
    Srinivas G; Lovell A; Skipper NT; Bennington SM; Kurban Z; Smith RI
    Phys Chem Chem Phys; 2010 Jun; 12(23):6253-9. PubMed ID: 20431839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001).
    Gao T; Gao Y; Chang C; Chen Y; Liu M; Xie S; He K; Ma X; Zhang Y; Liu Z
    ACS Nano; 2012 Aug; 6(8):6562-8. PubMed ID: 22861188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of host layer flexibility in DNA guest intercalation revealed by computer simulation of layered nanomaterials.
    Thyveetil MA; Coveney PV; Greenwell HC; Suter JL
    J Am Chem Soc; 2008 Sep; 130(37):12485-95. PubMed ID: 18722440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of ternary and quaternary graphite intercalation compounds containing alkali metal cations and diamines.
    Maluangnont T; Lerner MM; Gotoh K
    Inorg Chem; 2011 Nov; 50(22):11676-82. PubMed ID: 22010603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of graphene oxide formation.
    Dimiev AM; Tour JM
    ACS Nano; 2014 Mar; 8(3):3060-8. PubMed ID: 24568241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of a homologous series of tetraalkylammonium graphite intercalation compounds.
    Sirisaksoontorn W; Lerner MM
    Inorg Chem; 2013 Jun; 52(12):7139-44. PubMed ID: 23724803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Direct Real-Time Observation of Anion Intercalation in Graphite Process and Its Fully Reversibility by SAXS/WAXS Techniques.
    Greco G; Elia GA; Hermida-Merino D; Hahn R; Raoux S
    Small Methods; 2023 Jun; 7(6):e2201633. PubMed ID: 36895075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green and simple production of graphite intercalation compound used sodium bicarbonate as intercalation agent.
    Wang X; Wang G; Zhang L
    BMC Chem; 2022 Mar; 16(1):13. PubMed ID: 35292102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between hydrogen flux and carbon monolayer on SiC(0001): graphene formation kinetics.
    Deretzis I; La Magna A
    Nanoscale; 2013 Jan; 5(2):671-80. PubMed ID: 23223677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of graphite intercalation compounds containing oligo and polyethers.
    Zhang H; Lerner MM
    Nanoscale; 2016 Feb; 8(8):4608-12. PubMed ID: 26847933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor.
    Ang PK; Wang S; Bao Q; Thong JT; Loh KP
    ACS Nano; 2009 Nov; 3(11):3587-94. PubMed ID: 19788171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.