These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23438734)

  • 1. Mapping the global flow of aluminum: from liquid aluminum to end-use goods.
    Cullen JM; Allwood JM
    Environ Sci Technol; 2013 Apr; 47(7):3057-64. PubMed ID: 23438734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unearthing potentials for decarbonizing the U.S. aluminum cycle.
    Liu G; Bangs CE; Müller DB
    Environ Sci Technol; 2011 Nov; 45(22):9515-22. PubMed ID: 21970673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the global flow of steel: from steelmaking to end-use goods.
    Cullen JM; Allwood JM; Bambach MD
    Environ Sci Technol; 2012 Dec; 46(24):13048-55. PubMed ID: 23167601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of automobiles for the future of aluminum recycling.
    Modaresi R; Müller DB
    Environ Sci Technol; 2012 Aug; 46(16):8587-94. PubMed ID: 22816552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centennial evolution of aluminum in-use stocks on our aluminized planet.
    Liu G; Müller DB
    Environ Sci Technol; 2013 May; 47(9):4882-8. PubMed ID: 23480626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries.
    Modaresi R; Pauliuk S; Løvik AN; Müller DB
    Environ Sci Technol; 2014 Sep; 48(18):10776-84. PubMed ID: 25111289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis.
    Liu G; Müller DB
    Environ Sci Technol; 2013 Oct; 47(20):11873-81. PubMed ID: 24025046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal Dissipation and Inefficient Recycling Intensify Climate Forcing.
    Ciacci L; Harper EM; Nassar NT; Reck BK; Graedel TE
    Environ Sci Technol; 2016 Oct; 50(20):11394-11402. PubMed ID: 27662206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria.
    Buchner H; Laner D; Rechberger H; Fellner J
    Environ Sci Technol; 2015 May; 49(9):5546-54. PubMed ID: 25851493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertia of Technology Stocks: A Technology-Explicit Model for the Transition toward a Low-Carbon Global Aluminum Cycle.
    Langhorst M; Billy RG; Schwotzer C; Kaiser F; Müller DB
    Environ Sci Technol; 2024 Jun; 58(22):9624-9635. PubMed ID: 38772914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward sustainable material usage: evaluating the importance of market motivated agency in modeling material flows.
    Gaustad G; Olivetti E; Kirchain R
    Environ Sci Technol; 2011 May; 45(9):4110-7. PubMed ID: 21438601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.
    Løvik AN; Modaresi R; Müller DB
    Environ Sci Technol; 2014 Apr; 48(8):4257-65. PubMed ID: 24655476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of energy and material efficiency in meeting steel industry CO2 targets.
    Milford RL; Pauliuk S; Allwood JM; Müller DB
    Environ Sci Technol; 2013 Apr; 47(7):3455-62. PubMed ID: 23470090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Options for achieving a 50% cut in industrial carbon emissions by 2050.
    Allwood JM; Cullen JM; Milford RL
    Environ Sci Technol; 2010 Mar; 44(6):1888-94. PubMed ID: 20121181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
    Rehl T; Müller J
    J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery and distribution of incinerated aluminum packaging waste.
    Hu Y; Bakker MC; de Heij PG
    Waste Manag; 2011 Dec; 31(12):2422-30. PubMed ID: 21862306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.