These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23438751)

  • 21. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15.
    Li J; Xie Y; Wang R; Fang Z; Fang W; Zhang X; Xiao Y
    Eur Biophys J; 2018 Apr; 47(3):225-236. PubMed ID: 28875401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair.
    Garavaglia S; Cambria MT; Miglio M; Ragusa S; Iacobazzi V; Palmieri F; D'Ambrosio C; Scaloni A; Rizzi M
    J Mol Biol; 2004 Oct; 342(5):1519-31. PubMed ID: 15364578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasticity of laccase generated by homeologous recombination in yeast.
    Cusano AM; Mekmouche Y; Meglecz E; Tron T
    FEBS J; 2009 Oct; 276(19):5471-80. PubMed ID: 19694803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The reversible depletion and reconstitution of a copper ion in Coprinus cinereus laccase followed by spectroscopic techniques.
    Bukh C; Bjerrum MJ
    J Inorg Biochem; 2010 Oct; 104(10):1029-37. PubMed ID: 20609477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Narrowing laccase substrate specificity using active site saturation mutagenesis.
    Gupta N; Farinas ET
    Comb Chem High Throughput Screen; 2009 Mar; 12(3):269-74. PubMed ID: 19275532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical and AFM characterization on gold and carbon electrodes of a high redox potential laccase from Fusarium proliferatum.
    González Arzola K; Gimeno Y; Arévalo MC; Falcón MA; Hernández Creus A
    Bioelectrochemistry; 2010 Aug; 79(1):17-24. PubMed ID: 19854115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications.
    Jolivalt C; Madzak C; Brault A; Caminade E; Malosse C; Mougin C
    Appl Microbiol Biotechnol; 2005 Jan; 66(4):450-6. PubMed ID: 15349699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a novel copper-activated and halide-tolerant laccase in Geobacillus thermopakistaniensis.
    Basheer S; Rashid N; Ashraf R; Akram MS; Siddiqui MA; Imanaka T; Akhtar M
    Extremophiles; 2017 May; 21(3):563-571. PubMed ID: 28314922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colorimetric High-Throughput Screening Assays for the Directed Evolution of Fungal Laccases.
    Pardo I; Camarero S
    Methods Mol Biol; 2018; 1685():247-254. PubMed ID: 29086313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of laccase from the white rot fungus Trametes versicolor.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2005 Dec; 43(6):555-60. PubMed ID: 16410773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores.
    Gupta N; Farinas ET
    Protein Eng Des Sel; 2010 Aug; 23(8):679-82. PubMed ID: 20551082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Docking simulation and competitive experiments validate the interaction between the 2,5-xylidine inhibitor and Rigidoporus lignosus laccase.
    Cambria MT; Di Marino D; Falconi M; Garavaglia S; Cambria A
    J Biomol Struct Dyn; 2010 Feb; 27(4):501-10. PubMed ID: 19916571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants.
    Durão P; Chen Z; Silva CS; Soares CM; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO
    Biochem J; 2008 Jun; 412(2):339-46. PubMed ID: 18307408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-function study of two new middle-redox potential laccases from basidiomycetes Antrodiella faginea and Steccherinum murashkinskyi.
    Glazunova OA; Polyakov KM; Moiseenko KV; Kurzeev SA; Fedorova TV
    Int J Biol Macromol; 2018 Oct; 118(Pt A):406-418. PubMed ID: 29890251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for functional laccases in the acidophilic ascomycete Hortaea acidophila and isolation of laccase-specific gene fragments.
    Tetsch L; Bend J; Janssen M; Hölker U
    FEMS Microbiol Lett; 2005 Apr; 245(1):161-8. PubMed ID: 15796994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of the salt activation of laccase Lac15.
    Li Z; Jiang S; Xie Y; Fang Z; Xiao Y; Fang W; Zhang X
    Biochem Biophys Res Commun; 2020 Jan; 521(4):997-1002. PubMed ID: 31727364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modifications of laccase activities of copper efflux oxidase, CueO by synergistic mutations in the first and second coordination spheres of the type I copper center.
    Kataoka K; Kogi H; Tsujimura S; Sakurai T
    Biochem Biophys Res Commun; 2013 Feb; 431(3):393-7. PubMed ID: 23337502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced catalytic efficiency of CotA-laccase by DNA shuffling.
    Ouyang F; Zhao M
    Bioengineered; 2019 Dec; 10(1):182-189. PubMed ID: 31142180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigations of Accessibility of T2/T3 Copper Center of Two-Domain Laccase from
    Gabdulkhakov A; Kolyadenko I; Kostareva O; Mikhaylina A; Oliveira P; Tamagnini P; Lisov A; Tishchenko S
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low pH dye decolorization with ascomycete Lamprospora wrightii laccase.
    Mueangtoom K; Kittl R; Mann O; Haltrich D; Ludwig R
    Biotechnol J; 2010 Aug; 5(8):857-70. PubMed ID: 20652905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.