These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23438771)

  • 1. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.
    Gohean JR; George MJ; Pate TD; Kurusz M; Longoria RG; Smalling RW
    ASAIO J; 2013; 59(2):107-16. PubMed ID: 23438771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model.
    Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracorporeal membrane oxygenation versus counterpulsatile, pulsatile, and continuous left ventricular unloading for pediatric mechanical circulatory support.
    Bartoli CR; Koenig SC; Ionan C; Gillars KJ; Mitchell ME; Austin EH; Gray LA; Pantalos GM
    Pediatr Crit Care Med; 2013 Nov; 14(9):e424-37. PubMed ID: 24108116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemodynamic evaluation of the new pulsatile-flow generation method in vitro.
    Itkin GP; Bychnev AS; Kuleshov AP; Drobyshev AA
    Int J Artif Organs; 2020 Mar; 43(3):157-164. PubMed ID: 31603372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Varying speed modulation of continuous-flow left ventricular assist device based on cardiovascular coupling numerical model.
    Liu H; Liu S; Ma X
    Comput Methods Biomech Biomed Engin; 2021 Jul; 24(9):956-972. PubMed ID: 33347766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling.
    Bozkurt S; van de Vosse FN; Rutten MC
    Int J Artif Organs; 2014 Oct; 37(10):773-85. PubMed ID: 24970558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving hemodynamics of cardiovascular system under a novel intraventricular assist device support via modeling and simulations.
    Zhu S; Luo L; Yang B; Li X; Wang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):221-231. PubMed ID: 29072502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of aortic valve pressure overload and leaflet functions in an ex vivo beating heart loaded with a continuous flow cardiac assist device.
    Tuzun E; Pennings K; van Tuijl S; de Hart J; Stijnen M; van de Vosse F; de Mol B; Rutten M
    Eur J Cardiothorac Surg; 2014 Feb; 45(2):377-83. PubMed ID: 23818568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular and hemodynamics responses of failing myocardium to continuous flow mechanical circulatory support using the DeBakey-Noon left ventricular assist device: a comparative analysis with pulsatile-type devices.
    Thohan V; Stetson SJ; Nagueh SF; Rivas-Gotz C; Koerner MM; Lafuente JA; Loebe M; Noon GP; Torre-Amione G
    J Heart Lung Transplant; 2005 May; 24(5):566-75. PubMed ID: 15896754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011.
    Holman WL; Naftel DC; Eckert CE; Kormos RL; Goldstein DJ; Kirklin JK
    J Thorac Cardiovasc Surg; 2013 Aug; 146(2):437-41.e1. PubMed ID: 23490245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preservation of native aortic valve flow and full hemodynamic support with the TORVAD using a computational model of the cardiovascular system.
    Gohean JR; George MJ; Chang KW; Larson ER; Pate TD; Kurusz M; Longoria RG; Smalling RW
    ASAIO J; 2015; 61(3):259-65. PubMed ID: 25485562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of ventricular unloading using an electrocardiogram-synchronized pulsatile ventricular assist device under high stroke ratios.
    Magkoutas K; Rebholz M; Sündermann S; Alogna A; Faragli A; Falk V; Meboldt M; Schmid Daners M
    Artif Organs; 2020 Oct; 44(10):E394-E405. PubMed ID: 32321193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a Lumped Parameter Model to Study the Feasibility of Simultaneous Implantation of a Continuous Flow Ventricular Assist Device (VAD) and a Pulsatile Flow VAD in BIVAD Patients.
    Di Molfetta A; Ferrari G; Iacobelli R; Filippelli S; Fresiello L; Guccione P; Toscano A; Amodeo A
    Artif Organs; 2017 Mar; 41(3):242-252. PubMed ID: 28281287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic performance of a compact centrifugal left ventricular assist device with fully magnetic levitation under pulsatile operation: An in vitro study.
    Wu T; Lin H; Zhu Y; Huang P; Lin F; Chen C; Hsu PL
    Proc Inst Mech Eng H; 2020 Nov; 234(11):1235-1242. PubMed ID: 32650694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure.
    Soucy KG; Giridharan GA; Choi Y; Sobieski MA; Monreal G; Cheng A; Schumer E; Slaughter MS; Koenig SC
    J Heart Lung Transplant; 2015 Jan; 34(1):122-131. PubMed ID: 25447573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.
    Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M
    Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concomitant pulsatile and continuous flow VAD in biventricular and univentricular physiology: a comparison study with a numerical model.
    Di Molfetta A; Ferrari G; Iacobelli R; Filippelli S; Guccione P; Fresiello L; Perri G; Amodeo A
    Int J Artif Organs; 2017 Mar; 40(2):74-81. PubMed ID: 28218352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery.
    Sunagawa G; Byram N; Karimov JH; Horvath DJ; Moazami N; Starling RC; Fukamachi K
    J Thorac Cardiovasc Surg; 2015 Aug; 150(2):343-8. PubMed ID: 26204865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.