BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 23438843)

  • 1. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications.
    Paulech J; Liddy KA; Engholm-Keller K; White MY; Cordwell SJ
    Mol Cell Proteomics; 2015 Mar; 14(3):609-20. PubMed ID: 25561502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).
    Gu L; Robinson RA
    Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Global Profile of Reversible and Irreversible Cysteine Redox Post-Translational Modifications During Myocardial Ischemia/Reperfusion Injury and Antioxidant Intervention.
    Rookyard AW; Paulech J; Thyssen S; Liddy KA; Puckeridge M; Li DK; White MY; Cordwell SJ
    Antioxid Redox Signal; 2021 Jan; 34(1):11-31. PubMed ID: 32729339
    [No Abstract]   [Full Text] [Related]  

  • 7. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel class of chemically modified iodo-containing resins: design, synthesis and application to mass spectrometry-based proteome analysis.
    Zhang L; Guo YL; Liu HQ
    J Mass Spectrom; 2004 Apr; 39(4):447-57. PubMed ID: 15103659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state.
    Go YM; Jones DP
    Circulation; 2005 Jun; 111(22):2973-80. PubMed ID: 15927968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY; Yan H; Macher BA
    J Mass Spectrom; 2002 Jan; 37(1):15-30. PubMed ID: 11813307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the cysteine proteome: analysis of redox-sensing thiols.
    Jones DP; Go YM
    Curr Opin Chem Biol; 2011 Feb; 15(1):103-12. PubMed ID: 21216657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W; Tedesco S; Faedda R; Petrone G; Cacciola SO; O'Keefe A; Sheehan D
    Talanta; 2010 Feb; 80(4):1569-75. PubMed ID: 20082816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures.
    Hao G; Derakhshan B; Shi L; Campagne F; Gross SS
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):1012-7. PubMed ID: 16418269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat.
    Bykova NV; Hoehn B; Rampitsch C; Hu J; Stebbing JA; Knox R
    Phytochemistry; 2011 Jul; 72(10):1162-72. PubMed ID: 21295800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating redox regulation of protein tyrosine phosphatases using low pH thiol labeling and enrichment strategies coupled to MALDI-TOF mass spectrometry.
    Bonham CA; Steevensz AJ; Geng Q; Vacratsis PO
    Methods; 2014 Jan; 65(2):190-200. PubMed ID: 23978514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.