These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 23438863)
1. Degradation profile and preliminary clinical testing of a resorbable device for ligation of blood vessels. Aminlashgari N; Höglund OV; Borg N; Hakkarainen M Acta Biomater; 2013 Jun; 9(6):6898-904. PubMed ID: 23438863 [TBL] [Abstract][Full Text] [Related]
2. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis. Pietrzak WS; Kumar M J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292 [TBL] [Abstract][Full Text] [Related]
3. Dynamic mechanical studies of hydrolytic degradation in isotropic and oriented Maxon B. Hill SP; Montes de Oca H; Klein PG; Ward IM; Rose J; Farrar D Biomaterials; 2006 Jun; 27(17):3168-77. PubMed ID: 16476477 [TBL] [Abstract][Full Text] [Related]
4. A new resorbable device for ligation of blood vessels - A pilot study. Höglund OV; Hagman R; Olsson K; Mindemark J; Borg N; Lagerstedt AS Acta Vet Scand; 2011 Jul; 53(1):47. PubMed ID: 21740556 [TBL] [Abstract][Full Text] [Related]
5. Ligation of the spermatic cord in dogs with a self-locking device of a resorbable polyglycolic based co-polymer--feasibility and long-term follow-up study. Höglund OV; Ingman J; Södersten F; Hansson K; Borg N; Lagerstedt AS BMC Res Notes; 2014 Nov; 7():825. PubMed ID: 25410023 [TBL] [Abstract][Full Text] [Related]
6. Low viscosity poly(trimethylene carbonate) for localized drug delivery: rheological properties and in vivo degradation. Timbart L; Tse MY; Pang SC; Babasola O; Amsden BG Macromol Biosci; 2009 Aug; 9(8):786-94. PubMed ID: 19253418 [TBL] [Abstract][Full Text] [Related]
7. Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids. Deng M; Zhou J; Chen G; Burkley D; Xu Y; Jamiolkowski D; Barbolt T Biomaterials; 2005 Jul; 26(20):4327-36. PubMed ID: 15683657 [TBL] [Abstract][Full Text] [Related]
8. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Grayson AC; Cima MJ; Langer R Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189 [TBL] [Abstract][Full Text] [Related]
9. A study on in vitro degradation behavior of a poly(glycolide-co-L-lactide) monofilament. Deng M; Chen G; Burkley D; Zhou J; Jamiolkowski D; Xu Y; Vetrecin R Acta Biomater; 2008 Sep; 4(5):1382-91. PubMed ID: 18442954 [TBL] [Abstract][Full Text] [Related]
10. Ligation of the mesovarium in dogs with a self-locking implant of a resorbable polyglycolic based co-polymer: a study of feasibility and comparison to suture ligation. Costa MR; Oliveira AL; Ramos RM; Vidal LW; Borg N; Höglund OV BMC Res Notes; 2016 Apr; 9():245. PubMed ID: 27121033 [TBL] [Abstract][Full Text] [Related]
11. PEG-PLA block copolymer as potential drug carrier: preparation and characterization. Ben-Shabat S; Kumar N; Domb AJ Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420 [TBL] [Abstract][Full Text] [Related]
12. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related]
13. Influence of electron-beam radiation on the hydrolytic degradation behaviour of poly(lactide-co-glycolide) (PLGA). Loo SC; Ooi CP; Boey YC Biomaterials; 2005 Jun; 26(18):3809-17. PubMed ID: 15626429 [TBL] [Abstract][Full Text] [Related]