BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23438946)

  • 1. Effect of CYP3A5*3 polymorphism on pharmacokinetic drug interaction between tacrolimus and amlodipine.
    Zuo XC; Zhou YN; Zhang BK; Yang GP; Cheng ZN; Yuan H; Ouyang DS; Liu SK; Barrett JS; Li PJ; Liu Z; Tan HY; Guo R; Zhou LY; Xie YL; Li ZJ; Li J; Wang CJ; Wang JL
    Drug Metab Pharmacokinet; 2013; 28(5):398-405. PubMed ID: 23438946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Weight and CYP3A5 Genotype on the Population Pharmacokinetics of Tacrolimus in Stable Paediatric Renal Transplant Recipients.
    Prytuła AA; Cransberg K; Bouts AH; van Schaik RH; de Jong H; de Wildt SN; Mathôt RA
    Clin Pharmacokinet; 2016 Sep; 55(9):1129-43. PubMed ID: 27138785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients.
    Zhang JJ; Liu SB; Xue L; Ding XL; Zhang H; Miao LY
    Int J Clin Pharmacol Ther; 2015 Sep; 53(9):728-36. PubMed ID: 26227094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients.
    Chen P; Li J; Li J; Deng R; Fu Q; Chen J; Huang M; Chen X; Wang C
    J Clin Pharm Ther; 2017 Feb; 42(1):93-97. PubMed ID: 27885697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individualization of tacrolimus dosage basing on cytochrome P450 3A5 polymorphism--a prospective, randomized, controlled study.
    Chen SY; Li JL; Meng FH; Wang XD; Liu T; Li J; Liu LS; Fu Q; Huang M; Wang CX
    Clin Transplant; 2013; 27(3):E272-81. PubMed ID: 23432535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the P450 oxidoreductase 28 polymorphism on the pharmacokinetics of tacrolimus in Chinese healthy male volunteers.
    Zhang JJ; Zhang H; Ding XL; Ma S; Miao LY
    Eur J Clin Pharmacol; 2013 Apr; 69(4):807-12. PubMed ID: 23097010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of CYP3A5 genetic polymorphisms on adverse events in patients with ulcerative colitis treated with tacrolimus.
    Asada A; Bamba S; Morita Y; Takahashi K; Imaeda H; Nishida A; Inatomi O; Sugimoto M; Sasaki M; Andoh A
    Dig Liver Dis; 2017 Jan; 49(1):24-28. PubMed ID: 27717793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association Between CYP3A5 Genetic Polymorphisms with Tacrolimus Dose Requirement and Allograft Outcomes in Iranian Kidney Transplant Recipients.
    Ghafari S; Dashti-Khavidaki S; Khatami MR; Ghahremani MH; Seyednejad SA; Beh-Pajooh A
    Iran J Kidney Dis; 2019 Nov; 13(6):414-416. PubMed ID: 31880588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients.
    Miura M; Satoh S; Kagaya H; Saito M; Numakura K; Tsuchiya N; Habuchi T
    Pharmacogenomics; 2011 Jul; 12(7):977-84. PubMed ID: 21635144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of diltiazem on pharmacokinetics of tacrolimus in relation to CYP3A5 genotype status in renal recipients: from retrospective to prospective.
    Li JL; Wang XD; Chen SY; Liu LS; Fu Q; Chen X; Teng LC; Wang CX; Huang M
    Pharmacogenomics J; 2011 Aug; 11(4):300-6. PubMed ID: 20514078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of CYP3A5 polymorphisms on tacrolimus pharmacokinetics in pediatric kidney transplantation: a systematic review and meta-analysis of observational studies.
    Zong YP; Wang ZJ; Zhou WL; Zhou WM; Ma TL; Huang ZK; Zhao CC; Xu Z; Tan RY; Gu M
    World J Pediatr; 2017 Oct; 13(5):421-426. PubMed ID: 28540692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosage Optimization Based on Population Pharmacokinetic Analysis of Tacrolimus in Chinese Patients with Nephrotic Syndrome.
    Lu T; Zhu X; Xu S; Zhao M; Huang X; Wang Z; Zhao L
    Pharm Res; 2019 Feb; 36(3):45. PubMed ID: 30719576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients.
    Deininger KM; Vu A; Page RL; Ambardekar AV; Lindenfeld J; Aquilante CL
    Clin Transplant; 2016 Sep; 30(9):1074-81. PubMed ID: 27314545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population pharmacokinetic analysis of tacrolimus in Mexican paediatric renal transplant patients: role of CYP3A5 genotype and formulation.
    Jacobo-Cabral CO; García-Roca P; Romero-Tejeda EM; Reyes H; Medeiros M; Castañeda-Hernández G; Trocóniz IF
    Br J Clin Pharmacol; 2015 Oct; 80(4):630-41. PubMed ID: 25846845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYP3A5 Genotype and Time to Reach Tacrolimus Therapeutic Levels in Renal Transplant Children.
    Alvarez-Elías AC; García-Roca P; Velásquez-Jones L; Valverde S; Varela-Fascinetto G; Medeiros M
    Transplant Proc; 2016 Mar; 48(2):631-4. PubMed ID: 27110018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tacrolimus Dose Optimization Strategy for Refractory Ulcerative Colitis Based on the Cytochrome P450 3A5 Polymorphism Prediction Using Trough Concentration after 24 Hours.
    Onodera M; Endo K; Naito T; Moroi R; Kuroha M; Kanazawa Y; Kimura T; Shiga H; Kakuta Y; Negoro K; Kinouchi Y; Shimosegawa T
    Digestion; 2018; 97(1):90-96. PubMed ID: 29393157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of CYP3A5 polymorphism on trough concentrations and outcomes of tacrolimus minimization during the early period after kidney transplantation.
    Yaowakulpatana K; Vadcharavivad S; Ingsathit A; Areepium N; Kantachuvesiri S; Phakdeekitcharoen B; Sukasem C; Sra-Ium S; Sumethkul V; Kitiyakara C
    Eur J Clin Pharmacol; 2016 Mar; 72(3):277-83. PubMed ID: 26635230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pharmacokinetics and pharmacogenetics of once- and twice-daily tacrolimus in the early stage after renal transplantation.
    Niioka T; Satoh S; Kagaya H; Numakura K; Inoue T; Saito M; Narita S; Tsuchiya N; Habuchi T; Miura M
    Transplantation; 2012 Nov; 94(10):1013-9. PubMed ID: 23073468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of tacrolimus circadian pharmacokinetics and CYP3A5 pharmacogenetics in the early and maintenance stages in Japanese renal transplant recipients.
    Satoh S; Kagaya H; Saito M; Inoue T; Miura M; Inoue K; Numakura K; Tsuchiya N; Tada H; Suzuki T; Habuchi T
    Br J Clin Pharmacol; 2008 Aug; 66(2):207-14. PubMed ID: 18429967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients.
    de Jonge H; Metalidis C; Naesens M; Lambrechts D; Kuypers DR
    Pharmacogenomics; 2011 Sep; 12(9):1281-91. PubMed ID: 21770725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.