These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 23438978)
1. Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. Serrano DR; Hernández L; Fleire L; González-Alvarez I; Montoya A; Ballesteros MP; Dea-Ayuela MA; Miró G; Bolás-Fernández F; Torrado JJ Int J Pharm; 2013 Apr; 447(1-2):38-46. PubMed ID: 23438978 [TBL] [Abstract][Full Text] [Related]
2. Effect of aggregation state on the toxicity of different amphotericin B preparations. Espada R; Valdespina S; Alfonso C; Rivas G; Ballesteros MP; Torrado JJ Int J Pharm; 2008 Sep; 361(1-2):64-9. PubMed ID: 18599228 [TBL] [Abstract][Full Text] [Related]
3. In vivo distribution and therapeutic efficacy of a novel amphotericin B poly-aggregated formulation. Espada R; Valdespina S; Dea MA; Molero G; Ballesteros MP; Bolás F; Torrado JJ J Antimicrob Chemother; 2008 May; 61(5):1125-31. PubMed ID: 18285313 [TBL] [Abstract][Full Text] [Related]
4. Comparison of LNS-AmB, a novel low-dose formulation of amphotericin B with lipid nano-sphere (LNS), with commercial lipid-based formulations. Fukui H; Koike T; Nakagawa T; Saheki A; Sonoke S; Tomii Y; Seki J Int J Pharm; 2003 Nov; 267(1-2):101-12. PubMed ID: 14602388 [TBL] [Abstract][Full Text] [Related]
5. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Jung SH; Lim DH; Jung SH; Lee JE; Jeong KS; Seong H; Shin BC Eur J Pharm Sci; 2009 Jun; 37(3-4):313-20. PubMed ID: 19491021 [TBL] [Abstract][Full Text] [Related]
6. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Bekersky I; Fielding RM; Dressler DE; Lee JW; Buell DN; Walsh TJ Antimicrob Agents Chemother; 2002 Mar; 46(3):834-40. PubMed ID: 11850269 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the pharmacokinetic profiles of two different amphotericin B formulations in healthy dogs. Bingöl B; Bakirel T J Vet Pharmacol Ther; 2018 Feb; 41(1):e16-e21. PubMed ID: 28815733 [TBL] [Abstract][Full Text] [Related]
9. Pharmacokinetics characterization of liposomal amphotericin B: investigation of clearance process and drug interaction potential. Matsui S; Imai S; Yabuki M; Komuro S Arzneimittelforschung; 2009; 59(9):461-70. PubMed ID: 19856794 [TBL] [Abstract][Full Text] [Related]
10. Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. Gershkovich P; Wasan EK; Lin M; Sivak O; Leon CG; Clement JG; Wasan KM J Antimicrob Chemother; 2009 Jul; 64(1):101-8. PubMed ID: 19398459 [TBL] [Abstract][Full Text] [Related]
11. Visceral leishmaniasis affects liver and spleen concentrations of amphotericin B following administration to mice. Gershkovich P; Wasan EK; Sivak O; Li R; Zhu X; Werbovetz KA; Tidwell RR; Clement JG; Thornton SJ; Wasan KM J Antimicrob Chemother; 2010 Mar; 65(3):535-7. PubMed ID: 20026611 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired Calcium Phosphate Nanoparticles Featuring as Efficient Carrier and Prompter for Macrophage Intervention in Experimental Leishmaniasis. Chaurasia M; Singh PK; Jaiswal AK; Kumar A; Pawar VK; Dube A; Paliwal SK; Chourasia MK Pharm Res; 2016 Nov; 33(11):2617-29. PubMed ID: 27401407 [TBL] [Abstract][Full Text] [Related]
13. Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting. Gupta S; Vyas SP J Drug Target; 2007 Apr; 15(3):206-17. PubMed ID: 17454358 [TBL] [Abstract][Full Text] [Related]
14. Amphotericin B formulations and drug targeting. Torrado JJ; Espada R; Ballesteros MP; Torrado-Santiago S J Pharm Sci; 2008 Jul; 97(7):2405-25. PubMed ID: 17893903 [TBL] [Abstract][Full Text] [Related]
15. Efficacy of alternative dosing regimens of poly-aggregated amphotericin B. Espada R; Valdespina S; Molero G; Dea MA; Ballesteros MP; Torrado JJ Int J Antimicrob Agents; 2008 Jul; 32(1):55-61. PubMed ID: 18534826 [TBL] [Abstract][Full Text] [Related]
16. Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. de Carvalho RF; Ribeiro IF; Miranda-Vilela AL; de Souza Filho J; Martins OP; Cintra e Silva Dde O; Tedesco AC; Lacava ZG; Báo SN; Sampaio RN Exp Parasitol; 2013 Oct; 135(2):217-22. PubMed ID: 23891944 [TBL] [Abstract][Full Text] [Related]
17. Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Kaur K; Kumar P; Kush P Biomed Pharmacother; 2020 Aug; 128():110297. PubMed ID: 32480227 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in development of amphotericin B formulations for the treatment of visceral leishmaniasis. Mohamed-Ahmed AH; Brocchini S; Croft SL Curr Opin Infect Dis; 2012 Dec; 25(6):695-702. PubMed ID: 23147810 [TBL] [Abstract][Full Text] [Related]
19. Liposomal and lipid-based formulations of amphotericin B. de Marie S Leukemia; 1996 Jun; 10 Suppl 2():s93-6. PubMed ID: 8649062 [TBL] [Abstract][Full Text] [Related]
20. Pharmacokinetic-pharmacodynamic comparison of amphotericin B (AMB) and two lipid-associated AMB preparations, liposomal AMB and AMB lipid complex, in murine candidiasis models. Andes D; Safdar N; Marchillo K; Conklin R Antimicrob Agents Chemother; 2006 Feb; 50(2):674-84. PubMed ID: 16436726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]