These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 23439037)

  • 1. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.
    Minnoş B; Ilhan-Sungur E; Çotuk A; Güngör ND; Cansever N
    Biofouling; 2013; 29(3):223-35. PubMed ID: 23439037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.
    Ilhan-Sungur E; Ozuolmez D; Çotuk A; Cansever N; Muyzer G
    Anaerobe; 2017 Feb; 43():27-34. PubMed ID: 27871998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.
    Delaunois F; Tosar F; Vitry V
    Bioelectrochemistry; 2014 Jun; 97():110-9. PubMed ID: 24503139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems.
    Bolton N; Critchley M; Fabien R; Cromar N; Fallowfield H
    J Appl Microbiol; 2010 Jul; 109(1):239-47. PubMed ID: 20070443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.
    Wang H; Hu C; Hu X; Yang M; Qu J
    Water Res; 2012 Mar; 46(4):1070-8. PubMed ID: 22209261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel.
    Basheer R; Ganga G; Chandran RK; Nair GM; Nair MB; Shibli SM
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5615-25. PubMed ID: 22983597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of biofilm in the maturation process on the corrosion behavior of galvanized steel: long-term evaluation by EIS.
    Unsal T; Cansever N; Ilhan-Sungur E
    World J Microbiol Biotechnol; 2019 Jan; 35(2):22. PubMed ID: 30656423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.
    Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel.
    Li Y; Zhang P; Cai W; Rosenblatt JS; Raad II; Xu D; Gu T
    World J Microbiol Biotechnol; 2016 Feb; 32(2):23. PubMed ID: 26745983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of biocidal efficacy of Chloramine T trihydrate on planktonic and sessile bacteria in a model cooling tower water system.
    Sanli NO
    Water Sci Technol; 2019 Feb; 79(3):526-536. PubMed ID: 30924807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system.
    Doğruöz N; Göksay D; Ilhan-Sungur E; Cotuk A
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S5-12. PubMed ID: 19455520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of glutaraldehyde enhancement by D-limonene in the mitigation of biocorrosion of carbon steel by an oilfield biofilm consortium.
    Kijkla P; Wang D; Mohamed ME; Saleh MA; Kumseranee S; Punpruk S; Gu T
    World J Microbiol Biotechnol; 2021 Sep; 37(10):174. PubMed ID: 34519903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system.
    Lee DG; Park SJ; Kim SJ
    J Microbiol Biotechnol; 2007 Sep; 17(9):1558-62. PubMed ID: 18062238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
    Zhang Z; Stout JE; Yu VL; Vidic R
    Water Res; 2008 Jan; 42(1-2):129-36. PubMed ID: 17884130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodine susceptibility of pseudomonads grown attached to stainless steel surfaces.
    Pyle BH; McFeters GA
    Biofouling; 1990; 2():113-20. PubMed ID: 11537750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-continuous system for monitoring microbially influenced corrosion.
    Eid MM; Duncan KE; Tanner RS
    J Microbiol Methods; 2018 Jul; 150():55-60. PubMed ID: 29803719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biocidal effect of a novel synthesized gemini surfactant on environmental sulfidogenic bacteria: planktonic cells and biofilms.
    Labena A; Hegazy MA; Horn H; Müller E
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():367-75. PubMed ID: 25492209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient Level Determines Biofilm Characteristics and Subsequent Impact on Microbial Corrosion and Biocide Effectiveness.
    Salgar-Chaparro SJ; Lepkova K; Pojtanabuntoeng T; Darwin A; Machuca LL
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31980429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.