These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 23439162)

  • 1. Single-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring.
    Yum K; McNicholas TP; Mu B; Strano MS
    J Diabetes Sci Technol; 2013 Jan; 7(1):72-87. PubMed ID: 23439162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single walled carbon nanotubes as reporters for the optical detection of glucose.
    Barone PW; Strano MS
    J Diabetes Sci Technol; 2009 Mar; 3(2):242-52. PubMed ID: 20144355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo glucose monitoring: the clinical reality and the promise.
    Pickup JC; Hussain F; Evans ND; Sachedina N
    Biosens Bioelectron; 2005 Apr; 20(10):1897-902. PubMed ID: 15741056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein.
    Pickup JC; Khan F; Zhi ZL; Coulter J; Birch DJ
    J Diabetes Sci Technol; 2013 Jan; 7(1):62-71. PubMed ID: 23439161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-based glucose sensors.
    Pickup JC; Hussain F; Evans ND; Rolinski OJ; Birch DJ
    Biosens Bioelectron; 2005 Jun; 20(12):2555-65. PubMed ID: 15854825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose.
    Yum K; Ahn JH; McNicholas TP; Barone PW; Mu B; Kim JH; Jain RM; Strano MS
    ACS Nano; 2012 Jan; 6(1):819-30. PubMed ID: 22133474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration algorithms for continuous glucose monitoring systems based on interstitial fluid sensing.
    Sun T; Liu J; Chen CJ
    Biosens Bioelectron; 2024 Sep; 260():116450. PubMed ID: 38843770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared optical sensors based on single-walled carbon nanotubes.
    Barone PW; Baik S; Heller DA; Strano MS
    Nat Mater; 2005 Jan; 4(1):86-92. PubMed ID: 15592477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing by deconvolution plasma glucose from continuous glucose monitoring sensor data.
    Facchinetti A; Sparacino G; Zanderigo F; Cobelli C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():55-8. PubMed ID: 17946377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages.
    Barone PW; Parker RS; Strano MS
    Anal Chem; 2005 Dec; 77(23):7556-62. PubMed ID: 16316162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of sensors in the treatment and follow-up of patients with diabetes mellitus.
    Torres I; Baena MG; Cayon M; Ortego-Rojo J; Aguilar-Diosdado M
    Sensors (Basel); 2010; 10(8):7404-20. PubMed ID: 22163609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel methods to extract and quantify sensors based on single wall carbon nanotube fluorescence from animal tissue and hydrogel-based platforms.
    Hofferber E; Meier J; Herrera N; Stapleton J; Ney K; Francis B; Calkins C; Iverson N
    Methods Appl Fluoresc; 2021 Mar; 9(2):025005. PubMed ID: 33631740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Delivery of Nitric Oxide-Sensing, Single-Walled Carbon Nanotubes.
    Iverson NM; Strano MS; Wogan GN
    Curr Protoc Chem Biol; 2015 Jun; 7(2):93-102. PubMed ID: 26344235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous non-invasive ophthalmic glucose sensor for diabetics.
    Domschke AM
    Chimia (Aarau); 2010; 64(1-2):43-4. PubMed ID: 21137683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotubes as optical biomedical sensors.
    Kruss S; Hilmer AJ; Zhang J; Reuel NF; Mu B; Strano MS
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1933-50. PubMed ID: 23906934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediatorless, Reversible Optical Nanosensor Enabled through Enzymatic Pocket Doping.
    Zubkovs V; Schuergers N; Lambert B; Ahunbay E; Boghossian AA
    Small; 2017 Nov; 13(42):. PubMed ID: 28940888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of a novel sensor for continuous glucose monitoring.
    Schmelzeisen-Redeker G; Staib A; Strasser M; Müller U; Schoemaker M
    J Diabetes Sci Technol; 2013 Jul; 7(4):808-14. PubMed ID: 23911161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose sensors of the future. Implantable, wearable devices could replace the daily finger stick, but are they the real solution?
    Health News; 2004 Dec; 10(12):5. PubMed ID: 15645561
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.