These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23439383)

  • 1. Long-term potentiation: peeling the onion.
    Nicoll RA; Roche KW
    Neuropharmacology; 2013 Nov; 74():18-22. PubMed ID: 23439383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of CaMKII action in long-term potentiation.
    Lisman J; Yasuda R; Raghavachari S
    Nat Rev Neurosci; 2012 Feb; 13(3):169-82. PubMed ID: 22334212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active calcium/calmodulin-dependent protein kinase II (CaMKII) regulates NMDA receptor mediated postischemic long-term potentiation (i-LTP) by promoting the interaction between CaMKII and NMDA receptors in ischemia.
    Wang N; Chen L; Cheng N; Zhang J; Tian T; Lu W
    Neural Plast; 2014; 2014():827161. PubMed ID: 24734203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of CaMKII autophosphorylation for NMDA receptor-dependent synaptic potentiation.
    Giese KP
    Neuropharmacology; 2021 Aug; 193():108616. PubMed ID: 34051268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking.
    Herring BE; Nicoll RA
    Annu Rev Physiol; 2016; 78():351-65. PubMed ID: 26863325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation in cultured hippocampal neurons.
    Molnár E
    Semin Cell Dev Biol; 2011 Jul; 22(5):506-13. PubMed ID: 21807105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory.
    Park J; Chávez AE; Mineur YS; Morimoto-Tomita M; Lutzu S; Kim KS; Picciotto MR; Castillo PE; Tomita S
    Neuron; 2016 Oct; 92(1):75-83. PubMed ID: 27667007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of noise on CaMKII activation in a dendritic spine during LTP induction.
    Zeng S; Holmes WR
    J Neurophysiol; 2010 Apr; 103(4):1798-808. PubMed ID: 20107130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation.
    He Y; Kulasiri D; Samarasinghe S
    J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.
    Lisman J; Raghavachari S
    Brain Res; 2015 Sep; 1621():51-61. PubMed ID: 25511992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?
    Chen HX; Otmakhov N; Strack S; Colbran RJ; Lisman JE
    J Neurophysiol; 2001 Apr; 85(4):1368-76. PubMed ID: 11287461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases.
    Grey KB; Burrell BD
    J Neurophysiol; 2010 May; 103(5):2737-46. PubMed ID: 20457859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting properties of two forms of long-term potentiation in the hippocampus.
    Nicoll RA; Malenka RC
    Nature; 1995 Sep; 377(6545):115-8. PubMed ID: 7675078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-driven postsynaptic translocation of CaMKII.
    Merrill MA; Chen Y; Strack S; Hell JW
    Trends Pharmacol Sci; 2005 Dec; 26(12):645-53. PubMed ID: 16253351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular mechanisms for memory formation].
    Manabe T
    Brain Nerve; 2008 Jul; 60(7):707-15. PubMed ID: 18646610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation.
    Nicoll RA; Malenka RC
    Ann N Y Acad Sci; 1999 Apr; 868():515-25. PubMed ID: 10414328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIP
    Xie MJ; Ishikawa Y; Yagi H; Iguchi T; Oka Y; Kuroda K; Iwata K; Kiyonari H; Matsuda S; Matsuzaki H; Yuzaki M; Fukazawa Y; Sato M
    Sci Rep; 2019 Mar; 9(1):4305. PubMed ID: 30867511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase C promotes N-methyl-D-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation.
    Yan JZ; Xu Z; Ren SQ; Hu B; Yao W; Wang SH; Liu SY; Lu W
    J Biol Chem; 2011 Jul; 286(28):25187-200. PubMed ID: 21606495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M
    Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic memory and CaMKII.
    Nicoll RA; Schulman H
    Physiol Rev; 2023 Oct; 103(4):2877-2925. PubMed ID: 37290118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.