BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23439646)

  • 1. Light-dark adaptation of channelrhodopsin C128T mutant.
    Ritter E; Piwowarski P; Hegemann P; Bartl FJ
    J Biol Chem; 2013 Apr; 288(15):10451-8. PubMed ID: 23439646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The branched photocycle of the slow-cycling channelrhodopsin-2 mutant C128T.
    Stehfest K; Ritter E; Berndt A; Bartl F; Hegemann P
    J Mol Biol; 2010 May; 398(5):690-702. PubMed ID: 20346954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers.
    Bruun S; Stoeppler D; Keidel A; Kuhlmann U; Luck M; Diehl A; Geiger MA; Woodmansee D; Trauner D; Hegemann P; Oschkinat H; Hildebrandt P; Stehfest K
    Biochemistry; 2015 Sep; 54(35):5389-400. PubMed ID: 26237332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
    Ritter E; Stehfest K; Berndt A; Hegemann P; Bartl FJ
    J Biol Chem; 2008 Dec; 283(50):35033-41. PubMed ID: 18927082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy.
    Lórenz-Fonfría VA; Schultz BJ; Resler T; Schlesinger R; Bamann C; Bamberg E; Heberle J
    J Am Chem Soc; 2015 Feb; 137(5):1850-61. PubMed ID: 25584873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational coupling between the cytoplasmic carboxylic acid and the retinal in a fungal light-driven proton pump.
    Furutani Y; Sumii M; Fan Y; Shi L; Waschuk SA; Brown LS; Kandori H
    Biochemistry; 2006 Dec; 45(51):15349-58. PubMed ID: 17176057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin.
    Toledo D; Ramon E; Aguilà M; Cordomí A; Pérez JJ; Mendes HF; Cheetham ME; Garriga P
    J Biol Chem; 2011 Nov; 286(46):39993-40001. PubMed ID: 21940625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the primary reaction of channelrhodopsin-2 by imidazole, pH, and site-specific mutations.
    Scholz F; Bamberg E; Bamann C; Wachtveitl J
    Biophys J; 2012 Jun; 102(11):2649-57. PubMed ID: 22713581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond.
    Bamann C; Gueta R; Kleinlogel S; Nagel G; Bamberg E
    Biochemistry; 2010 Jan; 49(2):267-78. PubMed ID: 20000562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting a light-driven proton pump into a light-gated proton channel.
    Inoue K; Tsukamoto T; Shimono K; Suzuki Y; Miyauchi S; Hayashi S; Kandori H; Sudo Y
    J Am Chem Soc; 2015 Mar; 137(9):3291-9. PubMed ID: 25712566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.
    Kuhne J; Vierock J; Tennigkeit SA; Dreier MA; Wietek J; Petersen D; Gavriljuk K; El-Mashtoly SF; Hegemann P; Gerwert K
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9380-9389. PubMed ID: 31004059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. History and Perspectives of Ion-Transporting Rhodopsins.
    Kandori H
    Adv Exp Med Biol; 2021; 1293():3-19. PubMed ID: 33398804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
    Tsukamoto H; Terakita A; Shichida Y
    J Biol Chem; 2010 Mar; 285(10):7351-7. PubMed ID: 20053991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of Hydrogen-Bond Network in Rhodopsin Mutations Cause Night Blindness.
    Katayama K; Takeyama Y; Enomoto A; Imai H; Kandori H
    J Mol Biol; 2020 Sep; 432(19):5378-5389. PubMed ID: 32795534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy.
    Becker-Baldus J; Bamann C; Saxena K; Gustmann H; Brown LJ; Brown RC; Reiter C; Bamberg E; Wachtveitl J; Schwalbe H; Glaubitz C
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9896-901. PubMed ID: 26216996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation.
    Saari JC; Nawrot M; Kennedy BN; Garwin GG; Hurley JB; Huang J; Possin DE; Crabb JW
    Neuron; 2001 Mar; 29(3):739-48. PubMed ID: 11301032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a functional blue-wavelength-shifted rhodopsin mutant.
    Janz JM; Farrens DL
    Biochemistry; 2001 Jun; 40(24):7219-27. PubMed ID: 11401569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1.
    Schnedermann C; Muders V; Ehrenberg D; Schlesinger R; Kukura P; Heberle J
    J Am Chem Soc; 2016 Apr; 138(14):4757-62. PubMed ID: 26999496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket.
    Reeves PJ; Hwa J; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1927-31. PubMed ID: 10051571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chromophore structure of the long-lived intermediate of the C128T channelrhodopsin-2 variant.
    Bruun S; Naumann H; Kuhlmann U; Schulz C; Stehfest K; Hegemann P; Hildebrandt P
    FEBS Lett; 2011 Dec; 585(24):3998-4001. PubMed ID: 22094167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.