These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 23439980)
1. On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films. Iandolo B; Antosiewicz TJ; Hellman A; Zorić I Phys Chem Chem Phys; 2013 Apr; 15(14):4947-54. PubMed ID: 23439980 [TBL] [Abstract][Full Text] [Related]
2. Faradaic efficiency of O2 evolution on metal nanoparticle sensitized hematite photoanodes. Iandolo B; Wickman B; Seger B; Chorkendorff I; Zorić I; Hellman A Phys Chem Chem Phys; 2014 Jan; 16(3):1271-5. PubMed ID: 24297250 [TBL] [Abstract][Full Text] [Related]
3. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation. Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741 [TBL] [Abstract][Full Text] [Related]
4. Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons. Dutta A; Naldoni A; Malara F; Govorov AO; Shalaev VM; Boltasseva A Faraday Discuss; 2019 May; 214():283-295. PubMed ID: 30821797 [TBL] [Abstract][Full Text] [Related]
5. Inverse opal structured α-Fe2O3 on graphene thin films: enhanced photo-assisted water splitting. Zhang K; Shi X; Kim JK; Lee JS; Park JH Nanoscale; 2013 Mar; 5(5):1939-44. PubMed ID: 23358521 [TBL] [Abstract][Full Text] [Related]
6. Charge generation dynamics in hematite photoanodes decorated with gold nanostructures under near infrared excitation. Okazaki M; Furube A; Chen LY J Chem Phys; 2020 Jan; 152(4):041106. PubMed ID: 32007065 [TBL] [Abstract][Full Text] [Related]
7. Improving the Water Oxidation Efficiency with a Light-Induced Electric Field in Nanograting Photoanodes. Wang W; Guo B; Dai H; Zhao C; Xie G; Ma R; Akram MZ; Shan H; Cai C; Fang Z; Gong JR Nano Lett; 2019 Sep; 19(9):6133-6139. PubMed ID: 31430170 [TBL] [Abstract][Full Text] [Related]
8. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Li J; Cushing SK; Zheng P; Meng F; Chu D; Wu N Nat Commun; 2013; 4():2651. PubMed ID: 24136178 [TBL] [Abstract][Full Text] [Related]
9. Electron collection in host-guest nanostructured hematite photoanodes for water splitting: the influence of scaffold doping density. Kondofersky I; Dunn HK; Müller A; Mandlmeier B; Feckl JM; Fattakhova-Rohlfing D; Scheu C; Peter LM; Bein T ACS Appl Mater Interfaces; 2015 Mar; 7(8):4623-30. PubMed ID: 25562687 [TBL] [Abstract][Full Text] [Related]
10. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting. Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720 [TBL] [Abstract][Full Text] [Related]
12. New insight into the roles of oxygen vacancies in hematite for solar water splitting. Zhao X; Feng J; Chen S; Huang Y; Sum TC; Chen Z Phys Chem Chem Phys; 2017 Jan; 19(2):1074-1082. PubMed ID: 27858025 [TBL] [Abstract][Full Text] [Related]
13. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures. Erwin WR; Coppola A; Zarick HF; Arora P; Miller KJ; Bardhan R Nanoscale; 2014 Nov; 6(21):12626-34. PubMed ID: 25188374 [TBL] [Abstract][Full Text] [Related]
14. Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies. Li Y; Guijarro N; Zhang X; Prévot MS; Jeanbourquin XA; Sivula K; Chen H; Li Y ACS Appl Mater Interfaces; 2015 Aug; 7(31):16999-7007. PubMed ID: 26186065 [TBL] [Abstract][Full Text] [Related]
15. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO₄ photoanodes decorated with Ag@SiO₂ core-shell nanoparticles. Abdi FF; Dabirian A; Dam B; van de Krol R Phys Chem Chem Phys; 2014 Aug; 16(29):15272-7. PubMed ID: 24942363 [TBL] [Abstract][Full Text] [Related]
16. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535 [TBL] [Abstract][Full Text] [Related]
17. Back electron-hole recombination in hematite photoanodes for water splitting. Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340 [TBL] [Abstract][Full Text] [Related]
18. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface. Yang Z; Chen S; Fang P; Ren B; Girault HH; Tian Z Phys Chem Chem Phys; 2013 Apr; 15(15):5374-8. PubMed ID: 23376970 [TBL] [Abstract][Full Text] [Related]
19. Subpicosecond to Second Time-Scale Charge Carrier Kinetics in Hematite-Titania Nanocomposite Photoanodes. Ruoko TP; Kaunisto K; Bärtsch M; Pohjola J; Hiltunen A; Niederberger M; Tkachenko NV; Lemmetyinen H J Phys Chem Lett; 2015 Aug; 6(15):2859-64. PubMed ID: 26267170 [TBL] [Abstract][Full Text] [Related]
20. High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting. Ma Y; Shinde PS; Li X; Pan S ACS Omega; 2019 Oct; 4(17):17257-17268. PubMed ID: 31656900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]