These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 23439984)
1. Influence of polar medium on the reorganization energy of charge transfer between dyes in a dye sensitized film. Vaissier V; Barnes P; Kirkpatrick J; Nelson J Phys Chem Chem Phys; 2013 Apr; 15(13):4804-14. PubMed ID: 23439984 [TBL] [Abstract][Full Text] [Related]
2. Reorganization free energies for long-range electron transfer in a porphyrin-binding four-helix bundle protein. Blumberger J; Klein ML J Am Chem Soc; 2006 Oct; 128(42):13854-67. PubMed ID: 17044714 [TBL] [Abstract][Full Text] [Related]
3. Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells. Hardin BE; Sellinger A; Moehl T; Humphry-Baker R; Moser JE; Wang P; Zakeeruddin SM; Grätzel M; McGehee MD J Am Chem Soc; 2011 Jul; 133(27):10662-7. PubMed ID: 21619039 [TBL] [Abstract][Full Text] [Related]
4. Reorganization energies of diprotonated and saddle-distorted porphyrins in photoinduced electron-transfer reduction controlled by conformational distortion. Nakanishi T; Ohkubo K; Kojima T; Fukuzumi S J Am Chem Soc; 2009 Jan; 131(2):577-84. PubMed ID: 19099504 [TBL] [Abstract][Full Text] [Related]
5. Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. Clifford JN; Palomares E; Nazeeruddin MK; Grätzel M; Nelson J; Li X; Long NJ; Durrant JR J Am Chem Soc; 2004 Apr; 126(16):5225-33. PubMed ID: 15099107 [TBL] [Abstract][Full Text] [Related]
6. Photovoltaic properties of dye-sensitized solar cells associated with amphiphilic structure of ruthenium complex dyes. Liu KY; Hsu CL; Ni JS; Ho KC; Lin KF J Colloid Interface Sci; 2012 Apr; 372(1):73-9. PubMed ID: 22331035 [TBL] [Abstract][Full Text] [Related]
7. Control of the recombination rate by changing the polarity of the electrolyte in dye-sensitized solar cells. Idigoras J; Tena-Zaera R; Anta JA Phys Chem Chem Phys; 2014 Oct; 16(39):21513-23. PubMed ID: 25184736 [TBL] [Abstract][Full Text] [Related]
8. Regeneration and recombination kinetics in cobalt polypyridine based dye-sensitized solar cells, explained using Marcus theory. Feldt SM; Lohse PW; Kessler F; Nazeeruddin MK; Grätzel M; Boschloo G; Hagfeldt A Phys Chem Chem Phys; 2013 May; 15(19):7087-97. PubMed ID: 23552732 [TBL] [Abstract][Full Text] [Related]
9. Temperature- and pressure-dependence of the outer-sphere reorganization free energy for electron transfer reactions: a continuum approach. Manjari SR; Kim HJ J Phys Chem B; 2006 Jan; 110(1):494-500. PubMed ID: 16471560 [TBL] [Abstract][Full Text] [Related]
10. Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. Mosconi E; Yum JH; Kessler F; Gómez García CJ; Zuccaccia C; Cinti A; Nazeeruddin MK; Grätzel M; De Angelis F J Am Chem Soc; 2012 Nov; 134(47):19438-53. PubMed ID: 23113640 [TBL] [Abstract][Full Text] [Related]
11. Disentangling vibronic and solvent broadening effects in the absorption spectra of coumarin derivatives for dye sensitized solar cells. Cerezo J; Avila Ferrer FJ; Santoro F Phys Chem Chem Phys; 2015 May; 17(17):11401-11. PubMed ID: 25848730 [TBL] [Abstract][Full Text] [Related]
12. Effect of energy disorder in interfacial kinetics of dye-sensitized solar cells with organic hole transport material. Bisquert J; Palomares E; Quiñones CA J Phys Chem B; 2006 Oct; 110(39):19406-11. PubMed ID: 17004798 [TBL] [Abstract][Full Text] [Related]
13. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells. Hoke ET; Hardin BE; McGehee MD Opt Express; 2010 Feb; 18(4):3893-904. PubMed ID: 20389400 [TBL] [Abstract][Full Text] [Related]
14. New ruthenium sensitizers featuring bulky ancillary ligands combined with a dual functioned coadsorbent for high efficiency dye-sensitized solar cells. Shi Y; Liang M; Wang L; Han H; You L; Sun Z; Xue S ACS Appl Mater Interfaces; 2013 Jan; 5(1):144-53. PubMed ID: 23234441 [TBL] [Abstract][Full Text] [Related]
15. Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films: a comparison of two different ruthenium complexes. Li X; Nazeeruddin MK; Thelakkat M; Barnes PR; Vilar R; Durrant JR Phys Chem Chem Phys; 2011 Jan; 13(4):1575-84. PubMed ID: 21082092 [TBL] [Abstract][Full Text] [Related]
16. Photophysical studies of dipolar organic dyes that feature a 1,3-cyclohexadiene conjugated linkage: the implication of a twisted intramolecular charge-transfer state on the efficiency of dye-sensitized solar cells. Chen KF; Chang CW; Lin JL; Hsu YC; Yeh MC; Hsu CP; Sun SS Chemistry; 2010 Nov; 16(43):12873-82. PubMed ID: 20886474 [TBL] [Abstract][Full Text] [Related]
17. Characterization of photoinduced self-exchange reactions at molecule-semiconductor interfaces by transient polarization spectroscopy: lateral intermolecular energy and hole transfer across sensitized TiO2 thin films. Ardo S; Meyer GJ J Am Chem Soc; 2011 Oct; 133(39):15384-96. PubMed ID: 21861499 [TBL] [Abstract][Full Text] [Related]
18. Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties. Ni JS; Hung CY; Liu KY; Chang YH; Ho KC; Lin KF J Colloid Interface Sci; 2012 Nov; 386(1):359-65. PubMed ID: 22925118 [TBL] [Abstract][Full Text] [Related]
19. Nanocrystal-Dye Interactions: Studying the Feasibility of Co-Sensitization of Dyes with Semiconductor Nanocrystals. Mittal M; Sapra S Chemphyschem; 2017 Sep; 18(18):2509-2516. PubMed ID: 28758340 [TBL] [Abstract][Full Text] [Related]
20. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]