These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

708 related articles for article (PubMed ID: 23440068)

  • 1. Engineering of functional, perfusable 3D microvascular networks on a chip.
    Kim S; Lee H; Chung M; Jeon NL
    Lab Chip; 2013 Apr; 13(8):1489-500. PubMed ID: 23440068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels.
    Bichsel CA; Hall SR; Schmid RA; Guenat OT; Geiser T
    Tissue Eng Part A; 2015 Aug; 21(15-16):2166-76. PubMed ID: 25891384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.
    Wang X; Phan DT; Sobrino A; George SC; Hughes CC; Lee AP
    Lab Chip; 2016 Jan; 16(2):282-90. PubMed ID: 26616908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioengineered array of 3D microvessels for vascular permeability assay.
    Lee H; Kim S; Chung M; Kim JH; Jeon NL
    Microvasc Res; 2014 Jan; 91():90-8. PubMed ID: 24333621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric nanoparticles affect vascular function using a 3D human vascularized organotypic chip.
    Li Y; Wu Y; Liu Y; Deng QH; Mak M; Yang X
    Nanoscale; 2019 Sep; 11(33):15537-15549. PubMed ID: 31393488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.
    Ryu H; Oh S; Lee HJ; Lee JY; Lee HK; Jeon NL
    J Lab Autom; 2015 Jun; 20(3):296-301. PubMed ID: 25532526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs.
    Liu Y; Sakolish C; Chen Z; Phan DTT; Bender RHF; Hughes CCW; Rusyn I
    Toxicology; 2020 Dec; 445():152601. PubMed ID: 32980478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on vascular cytotoxicity and extravascular transport of cationic polymer nanoparticles using perfusable 3D microvessel model.
    Ahn J; Cho CS; Cho SW; Kang JH; Kim SY; Min DH; Song JM; Park TE; Jeon NL
    Acta Biomater; 2018 Aug; 76():154-163. PubMed ID: 29807185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of perfusable microvascular network morphology using a multiculture microfluidic system.
    Whisler JA; Chen MB; Kamm RD
    Tissue Eng Part C Methods; 2014 Jul; 20(7):543-52. PubMed ID: 24151838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of vascular sprouting from fabricated perfusable vascular-like structures.
    Osaki T; Kakegawa T; Kageyama T; Enomoto J; Nittami T; Fukuda J
    PLoS One; 2015; 10(4):e0123735. PubMed ID: 25860890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of a Biomimetic Pericyte-Covered 3D Microvascular Network.
    Kim J; Chung M; Kim S; Jo DH; Kim JH; Jeon NL
    PLoS One; 2015; 10(7):e0133880. PubMed ID: 26204526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device.
    Nashimoto Y; Hayashi T; Kunita I; Nakamasu A; Torisawa YS; Nakayama M; Takigawa-Imamura H; Kotera H; Nishiyama K; Miura T; Yokokawa R
    Integr Biol (Camb); 2017 Jun; 9(6):506-518. PubMed ID: 28561127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microphysiological Engineering of Self-Assembled and Perfusable Microvascular Beds for the Production of Vascularized Three-Dimensional Human Microtissues.
    Paek J; Park SE; Lu Q; Park KT; Cho M; Oh JM; Kwon KW; Yi YS; Song JW; Edelstein HI; Ishibashi J; Yang W; Myerson JW; Kiseleva RY; Aprelev P; Hood ED; Stambolian D; Seale P; Muzykantov VR; Huh D
    ACS Nano; 2019 Jul; 13(7):7627-7643. PubMed ID: 31194909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a 3D vascular network in hydrogel for mimicking a nephron.
    Mu X; Zheng W; Xiao L; Zhang W; Jiang X
    Lab Chip; 2013 Apr; 13(8):1612-8. PubMed ID: 23455642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of the formation of vascular networks in 3D tissue engineered constructs.
    Muraoka M; Shimizu T; Itoga K; Takahashi H; Okano T
    Biomaterials; 2013 Jan; 34(3):696-703. PubMed ID: 23102990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfabricated blood vessels undergo neoangiogenesis.
    DiVito KA; Daniele MA; Roberts SA; Ligler FS; Adams AA
    Biomaterials; 2017 Sep; 138():142-152. PubMed ID: 28570946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programming the Self-Organization of Endothelial Cells into Perfusable Microvasculature.
    Cabral KA; Srivastava V; Graham AJ; Coyle MC; Stashko C; Weaver V; Gartner ZJ
    Tissue Eng Part A; 2023 Feb; 29(3-4):80-92. PubMed ID: 36181350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.