BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 23440202)

  • 1. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle.
    Jih KY; Hwang TC
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4404-9. PubMed ID: 23440202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Potentiation of Cystic Fibrosis Transmembrane Conductance Regulator Gating by Two Chemically Distinct Potentiators, Ivacaftor (VX-770) and 5-Nitro-2-(3-Phenylpropylamino) Benzoate.
    Lin WY; Sohma Y; Hwang TC
    Mol Pharmacol; 2016 Sep; 90(3):275-85. PubMed ID: 27413118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common mechanism for CFTR potentiators.
    Yeh HI; Sohma Y; Conrath K; Hwang TC
    J Gen Physiol; 2017 Dec; 149(12):1105-1118. PubMed ID: 29079713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of CFTR gating by permeant ions.
    Yeh HI; Yeh JT; Hwang TC
    J Gen Physiol; 2015 Jan; 145(1):47-60. PubMed ID: 25512598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and pharmacological characterization of the N1303K mutant CFTR.
    DeStefano S; Gees M; Hwang TC
    J Cyst Fibros; 2018 Sep; 17(5):573-581. PubMed ID: 29887518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner.
    Eckford PD; Li C; Ramjeesingh M; Bear CE
    J Biol Chem; 2012 Oct; 287(44):36639-49. PubMed ID: 22942289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor.
    Li H; Rodrat M; Al-Salmani MK; Veselu DF; Han ST; Raraigh KS; Cutting GR; Sheppard DN
    J Physiol; 2024 Jan; 602(2):333-354. PubMed ID: 38186087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of the cystic fibrosis transmembrane conductance regulator by VX-770 involves stabilization of the pre-hydrolytic, O
    Langron E; Prins S; Vergani P
    Br J Pharmacol; 2018 Oct; 175(20):3990-4002. PubMed ID: 30107029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single amino acid substitution in CFTR converts ATP to an inhibitory ligand.
    Lin WY; Jih KY; Hwang TC
    J Gen Physiol; 2014 Oct; 144(4):311-20. PubMed ID: 25225552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of VX-770 (ivacaftor) and OAG on Ca2+ influx and CFTR activity in G551D and F508del-CFTR expressing cells.
    Vachel L; Norez C; Becq F; Vandebrouck C
    J Cyst Fibros; 2013 Dec; 12(6):584-91. PubMed ID: 23757361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation-specific dual potentiators maximize rescue of CFTR gating mutants.
    Veit G; Da Fonte DF; Avramescu RG; Premchandar A; Bagdany M; Xu H; Bensinger D; Stubba D; Schmidt B; Matouk E; Lukacs GL
    J Cyst Fibros; 2020 Mar; 19(2):236-244. PubMed ID: 31678009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of the cystic fibrosis transmembrane conductance regulator Cl
    Wang Y; Cai Z; Gosling M; Sheppard DN
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L846-L857. PubMed ID: 30136610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment.
    Pettit RS
    Ann Pharmacother; 2012; 46(7-8):1065-75. PubMed ID: 22739718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.
    Bompadre SG; Li M; Hwang TC
    J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small molecule CFTR potentiator restores ATP-dependent channel gating to the cystic fibrosis mutant G551D-CFTR.
    Liu J; Berg AP; Wang Y; Jantarajit W; Sutcliffe KJ; Stevens EB; Cao L; Pregel MJ; Sheppard DN
    Br J Pharmacol; 2022 Apr; 179(7):1319-1337. PubMed ID: 34644413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs.
    Miki H; Zhou Z; Li M; Hwang TC; Bompadre SG
    J Biol Chem; 2010 Jun; 285(26):19967-75. PubMed ID: 20406820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.