These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23440215)

  • 21. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.
    Tan S; Liu L; Dai Y; Ren J; Zhao J; Petek H
    J Am Chem Soc; 2017 May; 139(17):6160-6168. PubMed ID: 28402118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PEG-attached PAMAM dendrimers encapsulating gold nanoparticles: growing gold nanoparticles in the dendrimers for improvement of their photothermal properties.
    Umeda Y; Kojima C; Harada A; Horinaka H; Kono K
    Bioconjug Chem; 2010 Aug; 21(8):1559-64. PubMed ID: 20666440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of near-infrared light absorbing gold nanoparticles using polyethylene glycol-attached dendrimers.
    Kojima C; Umeda Y; Harada A; Kono K
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):648-51. PubMed ID: 20801621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separation of charge carriers and generation of reactive oxygen species by TiO
    Zhang H; Meng D; Fu B; Fan H; Cai R; Fu PP; Wu X
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(2):81-98. PubMed ID: 31131702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance.
    Rai P; Khan R; Raj S; Majhi SM; Park KK; Yu YT; Lee IH; Sekhar PK
    Nanoscale; 2014 Jan; 6(1):581-8. PubMed ID: 24241354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast relaxation dynamics in bimetallic plasmonic catalysts.
    Sim S; Beierle A; Mantos P; McCrory S; Prasankumar RP; Chowdhury S
    Nanoscale; 2020 May; 12(18):10284-10291. PubMed ID: 32363371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of DMF-protected Au NPs with different size distributions and their catalytic performance in the Ullmann homocoupling of aryl iodides.
    Yao W; Gong WJ; Li HX; Li FL; Gao J; Lang JP
    Dalton Trans; 2014 Nov; 43(42):15752-9. PubMed ID: 25211246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local surface plasmon resonance of gold nanoparticles as a correlative light and electron microscopy (CLEM) tag for biological samples.
    Haruta T; Hasumi K; Ikeda Y; Konyuba Y; Fukuda T; Nishioka H
    Microscopy (Oxf); 2019 Dec; 68(6):467-470. PubMed ID: 31687748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and characterization of complexes of liposomes with gold nanoparticles.
    Kojima C; Hirano Y; Yuba E; Harada A; Kono K
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):246-52. PubMed ID: 18723331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-dependence of Fermi energy of gold nanoparticles loaded on titanium(iv) dioxide at photostationary state.
    Kiyonaga T; Fujii M; Akita T; Kobayashi H; Tada H
    Phys Chem Chem Phys; 2008 Nov; 10(43):6553-61. PubMed ID: 18979040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential.
    Hamelian M; Varmira K; Veisi H
    J Photochem Photobiol B; 2018 Jul; 184():71-79. PubMed ID: 29842987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ visualization of self-assembly of charged gold nanoparticles.
    Liu Y; Lin XM; Sun Y; Rajh T
    J Am Chem Soc; 2013 Mar; 135(10):3764-7. PubMed ID: 23432699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii.
    Balalakshmi C; Gopinath K; Govindarajan M; Lokesh R; Arumugam A; Alharbi NS; Kadaikunnan S; Khaled JM; Benelli G
    J Photochem Photobiol B; 2017 Aug; 173():598-605. PubMed ID: 28697477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hot adsorbate-induced retardation of the internal thermalization of nonequilibrium electrons in adsorbate-covered metal nanoparticles.
    Bauer C; Abid JP; Girault HH
    J Phys Chem B; 2006 Mar; 110(10):4519-23. PubMed ID: 16526676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the High Sensitivity of the Electronic States of 1 nm Gold Particles to Pretreatments and Modifiers.
    Martynyuk O; Kotolevich Y; Vélez R; Cabrera Ortega JE; Tiznado H; Zepeda Partida T; Mota-Morales JD; Pestryakov A; Bogdanchikova N
    Molecules; 2016 Mar; 21(4):432. PubMed ID: 27043514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles' antibacterial properties.
    Chen MN; Chan CF; Huang SL; Lin YS
    J Sci Food Agric; 2019 May; 99(7):3693-3702. PubMed ID: 30663065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hot plasmonic interactions: a new look at the photothermal efficacy of gold nanoparticles.
    Lukianova-Hleb EY; Anderson LJ; Lee S; Hafner JH; Lapotko DO
    Phys Chem Chem Phys; 2010 Oct; 12(38):12237-44. PubMed ID: 20714596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.