These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23440278)

  • 21. [An optical mapping system based on spectral shift of voltage-sensitive dyes].
    Wang J; Zhang ZX; Xu ZH; Jin YS; Ji XL; Jin YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):617-20. PubMed ID: 18536426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes.
    Bullen A; Saggau P
    Biophys J; 1999 Apr; 76(4):2272-87. PubMed ID: 10096922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Spectral study of voltage sensitive dye di-4-ANEPPS].
    Xu ZH; Zhang ZX; Wang J; Zhang H; Li Z; Jin YS; Ding HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1359-62. PubMed ID: 17944414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle.
    Prosser BL; Hernández-Ochoa EO; Lovering RM; Andronache Z; Zimmer DB; Melzer W; Schneider MF
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C891-902. PubMed ID: 20686070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulatory actions of di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS), voltage-sensitive dye, on the BKCa channel in pituitary tumor (GH3) cells.
    Wu SN; Lin MW; Wang YJ
    Pflugers Arch; 2008 Jan; 455(4):687-99. PubMed ID: 17701422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The voltage-sensitive dye di-4-ANEPPS slows conduction velocity in isolated guinea pig hearts.
    Larsen AP; Sciuto KJ; Moreno AP; Poelzing S
    Heart Rhythm; 2012 Sep; 9(9):1493-500. PubMed ID: 22537886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectra of voltage-sensitive fluorescence of styryl-dye in neuron membrane.
    Fromherz P; Lambacher A
    Biochim Biophys Acta; 1991 Sep; 1068(2):149-56. PubMed ID: 1911828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)](i) in cardiac monolayers.
    Scull JA; McSpadden LC; Himel HD; Badie N; Bursac N
    Ann Biomed Eng; 2012 May; 40(5):1006-17. PubMed ID: 22124794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle.
    Launikonis BS; Stephenson DG; Friedrich O
    J Physiol; 2009 May; 587(Pt 10):2299-312. PubMed ID: 19332499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping action potentials and calcium transients simultaneously from the intact heart.
    Laurita KR; Singal A
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2053-60. PubMed ID: 11299206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New near-infrared optical probes of cardiac electrical activity.
    Matiukas A; Mitrea BG; Pertsov AM; Wuskell JP; Wei MD; Watras J; Millard AC; Loew LM
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2633-43. PubMed ID: 16399869
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The delayed rectifier potassium conductance in the sarcolemma and the transverse tubular system membranes of mammalian skeletal muscle fibers.
    DiFranco M; Quinonez M; Vergara JL
    J Gen Physiol; 2012 Aug; 140(2):109-37. PubMed ID: 22851675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of a voltage-sensitive dye (di-4-ANEPPS)-based method for assessing drug-induced delayed repolarisation in beagle dog left ventricular midmyocardial myocytes.
    Hardy ME; Pollard CE; Small BG; Bridgland-Taylor M; Woods AJ; Valentin JP; Abi-Gerges N
    J Pharmacol Toxicol Methods; 2009; 60(1):94-106. PubMed ID: 19414070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct measurement of the voltage sensitivity of second-harmonic generation from a membrane dye in patch-clamped cells.
    Millard AC; Jin L; Lewis A; Loew LM
    Opt Lett; 2003 Jul; 28(14):1221-3. PubMed ID: 12885027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent styryl dyes applied as fast optical probes of cardiac action potential.
    Müller W; Windisch H; Tritthart HA
    Eur Biophys J; 1986; 14(2):103-11. PubMed ID: 3816701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cardiac optical mapping under a translucent stimulation electrode.
    Liau J; Dumas J; Janks D; Roth BJ; Knisley SB
    Ann Biomed Eng; 2004 Sep; 32(9):1202-10. PubMed ID: 15493508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indicators and optical configuration for simultaneous high-resolution recording of membrane potential and intracellular calcium using laser scanning microscopy.
    Bullen A; Saggau P
    Pflugers Arch; 1998 Oct; 436(5):788-96. PubMed ID: 9716714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons.
    Zhang J; Davidson RM; Wei MD; Loew LM
    Biophys J; 1998 Jan; 74(1):48-53. PubMed ID: 9449308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of membrane potential and intracellular Ca(2+) of arteriolar endothelium and smooth muscle in vivo.
    Chen Y; Rivers RJ
    Microvasc Res; 2001 Jul; 62(1):55-62. PubMed ID: 11421660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical mapping of Langendorff-perfused rat hearts.
    Sill B; Hammer PE; Cowan DB
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19684567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.