These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 234403)

  • 21. Protein dynamics by solid-state NMR: aromatic rings of the coat protein in fd bacteriophage.
    Gall CM; Cross TA; DiVerdi JA; Opella SJ
    Proc Natl Acad Sci U S A; 1982 Jan; 79(1):101-5. PubMed ID: 6948294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Determination and comparative analysis of the conformation of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from the data of two-dimensional 1H-NMR spectroscopy].
    Sherman SA; Andrianov AM
    Mol Biol (Mosk); 1985; 19(5):1301-9. PubMed ID: 4079926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies of the location of the tyrosyl residues in insulin. II.
    Menendez CJ; Herskovits TT
    Biochemistry; 1969 Dec; 8(12):5052-9. PubMed ID: 5391866
    [No Abstract]   [Full Text] [Related]  

  • 24. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance.
    De Marco A; Menegatti E; Guarneri M
    Biochemistry; 1982 Jan; 21(2):222-9. PubMed ID: 6803827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1H NMR studies at 360 MHz of the aromatic amino acid residues in ferrocytochrome c-552 from Euglena gracilis.
    Keller RM; Wüthrich K
    Biochim Biophys Acta; 1977 Apr; 491(2):416-22. PubMed ID: 192308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor.
    March KL; Maskalick DG; England RD; Friend SH; Gurd FR
    Biochemistry; 1982 Oct; 21(21):5241-51. PubMed ID: 7171553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton NMR studies of Cucurbita maxima trypsin inhibitors: evidence for pH-dependent conformational change and His25-Tyr27 interaction.
    Krishnamoorthi R; Lin CL; Gong YX; VanderVelde D; Hahn K
    Biochemistry; 1992 Jan; 31(3):905-10. PubMed ID: 1731947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor.
    Perkins SJ; Wüthrich K
    Biochim Biophys Acta; 1979 Feb; 576(2):409-23. PubMed ID: 427198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional NMR studies of squash family inhibitors. Sequence-specific proton assignments and secondary structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.
    Krishnamoorthi R; Gong YX; Lin CL; VanderVelde D
    Biochemistry; 1992 Jan; 31(3):898-904. PubMed ID: 1731946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assignment of the histidine proton magnetic resonance peaks of soybean trypsin inhibitor (Kunitz) by a differertial deuterium exchange technique.
    Markley JL; Kato I
    Biochemistry; 1975 Jul; 14(14):3234-7. PubMed ID: 238587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete tyrosine assignments in the high-field 1H nuclear magnetic resonance spectrum of bovine pancreatic trypsin inhibitor selectively reduced and carboxamidomethylated at cystine 14-38.
    Snyder GH; Rowan R; Sykes BD
    Biochemistry; 1976 Jun; 15(11):2275-83. PubMed ID: 6043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 1H nuclear-magnetic-resonance study of the solution conformation of the isoinhibitor K from Helix pomatia.
    Wagner G; Wüthrich K; Tschesche H
    Eur J Biochem; 1978 Sep; 89(2):367-77. PubMed ID: 710398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study by the hydrogen-exchange method of the complex formed between the basic pancreatic trypsin inhibitor and trypsin.
    Pershina L; Hvidt A
    Eur J Biochem; 1974 Oct; 48(2):339-44. PubMed ID: 4475635
    [No Abstract]   [Full Text] [Related]  

  • 34. Nitrotyrosine chelation of nuclear magnetic resonance shift probes in proteins: application to bovine pancreatic trypsin inhibitor.
    Marinetti TD; Snyder GH; Sykes BD
    Biochemistry; 1977 Feb; 16(4):647-53. PubMed ID: 556950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: functional and structural investigation.
    Heinz DW; Hyberts SG; Peng JW; Priestle JP; Wagner G; Grütter MG
    Biochemistry; 1992 Sep; 31(37):8755-66. PubMed ID: 1390662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics of hydrogen bonds in bovine pancreatic trypsin inhibitor protein.
    Levitt M
    Nature; 1981 Nov; 294(5839):379-80. PubMed ID: 7312035
    [No Abstract]   [Full Text] [Related]  

  • 37. Dipolar NMR relaxation of nonprotonated aromatic carbons in proteins. Structural and dynamical effects.
    Levy RM; Dobson CM; Karplus M
    Biophys J; 1982 Jul; 39(1):107-13. PubMed ID: 6179550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Internal dynamics of proteins. Short time and long time motions of aromatic sidechains in PTI.
    Karplus M; Gelin BR; McCammon JA
    Biophys J; 1980 Oct; 32(1):603-18. PubMed ID: 7248464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1H nuclear magnetic resonance titration curves and microenvironments of aromatic residues in bovine pancreatic ribonuclease A.
    Tanokura M
    J Biochem; 1983 Jul; 94(1):51-62. PubMed ID: 6619120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitor-induced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease A.
    Markley JL
    Biochemistry; 1975 Aug; 14(16):554-61. PubMed ID: 240391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.