These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 23440336)

  • 1. Long-distance communication and signal amplification in systemic acquired resistance.
    Shah J; Zeier J
    Front Plant Sci; 2013; 4():30. PubMed ID: 23440336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signals of Systemic Immunity in Plants: Progress and Open Questions.
    Ádám AL; Nagy ZÁ; Kátay G; Mergenthaler E; Viczián O
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29642641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling by small metabolites in systemic acquired resistance.
    Shah J; Chaturvedi R; Chowdhury Z; Venables B; Petros RA
    Plant J; 2014 Aug; 79(4):645-58. PubMed ID: 24506415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SOS - too many signals for systemic acquired resistance?
    Dempsey DA; Klessig DF
    Trends Plant Sci; 2012 Sep; 17(9):538-45. PubMed ID: 22749315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signals in systemic acquired resistance of plants against microbial pathogens.
    Gao H; Guo M; Song J; Ma Y; Xu Z
    Mol Biol Rep; 2021 Apr; 48(4):3747-3759. PubMed ID: 33893927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.
    Bernsdorff F; Döring AC; Gruner K; Schuck S; Bräutigam A; Zeier J
    Plant Cell; 2016 Jan; 28(1):102-29. PubMed ID: 26672068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An abietane diterpenoid is a potent activator of systemic acquired resistance.
    Chaturvedi R; Venables B; Petros RA; Nalam V; Li M; Wang X; Takemoto LJ; Shah J
    Plant J; 2012 Jul; 71(1):161-72. PubMed ID: 22385469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity.
    Návarová H; Bernsdorff F; Döring AC; Zeier J
    Plant Cell; 2012 Dec; 24(12):5123-41. PubMed ID: 23221596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens.
    Shine MB; Xiao X; Kachroo P; Kachroo A
    Plant Sci; 2019 Feb; 279():81-86. PubMed ID: 30709496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pipecolic acid confers systemic immunity by regulating free radicals.
    Wang C; Liu R; Lim GH; de Lorenzo L; Yu K; Zhang K; Hunt AG; Kachroo A; Kachroo P
    Sci Adv; 2018 May; 4(5):eaar4509. PubMed ID: 29854946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants.
    Hartmann M; Zeier J
    Plant J; 2018 Oct; 96(1):5-21. PubMed ID: 30035374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus.
    Isaacs M; Carella P; Faubert J; Rose JK; Cameron RK
    Front Plant Sci; 2016; 7():566. PubMed ID: 27200039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance.
    Mishina TE; Zeier J
    Plant Physiol; 2006 Aug; 141(4):1666-75. PubMed ID: 16778014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salicylic Acid and Mobile Regulators of Systemic Immunity in Plants: Transport and Metabolism.
    Kim TJ; Lim GH
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance.
    Singh V; Roy S; Giri MK; Chaturvedi R; Chowdhury Z; Shah J; Nandi AK
    Mol Plant Microbe Interact; 2013 Sep; 26(9):1079-88. PubMed ID: 23745676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of chemical signals in systemic acquired resistance.
    Singh A; Lim GH; Kachroo P
    J Integr Plant Biol; 2017 May; 59(5):336-344. PubMed ID: 28304135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis.
    Orlovskis Z; Reymond P
    New Phytol; 2020 Dec; 228(5):1652-1661. PubMed ID: 32619278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance.
    Wang Y; Schuck S; Wu J; Yang P; Döring AC; Zeier J; Tsuda K
    Plant Cell; 2018 Oct; 30(10):2480-2494. PubMed ID: 30228125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent protein kinase 5 links calcium signaling with N-hydroxy-l-pipecolic acid- and SARD1-dependent immune memory in systemic acquired resistance.
    Guerra T; Schilling S; Hake K; Gorzolka K; Sylvester FP; Conrads B; Westermann B; Romeis T
    New Phytol; 2020 Jan; 225(1):310-325. PubMed ID: 31469917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance.
    David L; Kang J; Nicklay J; Dufresne C; Chen S
    Front Mol Biosci; 2021; 8():746523. PubMed ID: 34977152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.