These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23440517)

  • 41. Bilateral Versus Unilateral Cochlear Implantation in Adult Listeners: Speech-On-Speech Masking and Multitalker Localization.
    Rana B; Buchholz JM; Morgan C; Sharma M; Weller T; Konganda SA; Shirai K; Kawano A
    Trends Hear; 2017; 21():2331216517722106. PubMed ID: 28752811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of room acoustic parameters on speech and music perception among participants with cochlear implants.
    Eurich B; Klenzner T; Oehler M
    Hear Res; 2019 Jun; 377():122-132. PubMed ID: 30933704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of audiovisual ceiling performance on the relationship between reverberation and directional benefit: perception and prediction.
    Wu YH; Bentler RA
    Ear Hear; 2012; 33(5):604-14. PubMed ID: 22677815
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Blind binary masking for reverberation suppression in cochlear implants.
    Hazrati O; Lee J; Loizou PC
    J Acoust Soc Am; 2013 Mar; 133(3):1607-14. PubMed ID: 23464030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of reducing the number of electrodes on spatial hearing tasks for bilateral cochlear implant recipients.
    Perreau A; Tyler RS; Witt SA
    J Am Acad Audiol; 2010 Feb; 21(2):110-20. PubMed ID: 20166312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. USING MACHINE LEARNING TO MITIGATE THE EFFECTS OF REVERBERATION AND NOISE IN COCHLEAR IMPLANTS.
    Chu KM; Throckmorton CS; Collins LM; Mainsah BO
    Proc Meet Acoust; 2018 May; 33(1):. PubMed ID: 32582407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Speech Understanding in Noise for Adults With Cochlear Implants: Effects of Hearing Configuration, Source Location Certainty, and Head Movement.
    Gifford RH; Loiselle L; Natale S; Sheffield SW; Sunderhaus LW; S Dietrich M; Dorman MF
    J Speech Lang Hear Res; 2018 May; 61(5):1306-1321. PubMed ID: 29800361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploring the benefits of bilateral cochlear implants.
    van Hoesel RJ
    Audiol Neurootol; 2004; 9(4):234-46. PubMed ID: 15205551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensitivity of bilateral cochlear implant users to fine-structure and envelope interaural time differences.
    Noel VA; Eddington DK
    J Acoust Soc Am; 2013 Apr; 133(4):2314-28. PubMed ID: 23556598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of interaural differences in envelope shape on the perceived location of sounds (L).
    Francart T; Lenssen A; Wouters J
    J Acoust Soc Am; 2012 Aug; 132(2):611-4. PubMed ID: 22894182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coherent Coding of Enhanced Interaural Cues Improves Sound Localization in Noise With Bilateral Cochlear Implants.
    Williges B; Jürgens T; Hu H; Dietz M
    Trends Hear; 2018; 22():2331216518781746. PubMed ID: 29956589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mixed stimulation rates to improve sensitivity of interaural timing differences in bilateral cochlear implant listeners.
    Thakkar T; Kan A; Jones HG; Litovsky RY
    J Acoust Soc Am; 2018 Mar; 143(3):1428. PubMed ID: 29604701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensitivity to interaural time differences and localization accuracy in cochlear implant users with combined electric-acoustic stimulation.
    Körtje M; Baumann U; Stöver T; Weissgerber T
    PLoS One; 2020; 15(10):e0241015. PubMed ID: 33075114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensitivity of bimodal listeners to interaural time differences with modulated single- and multiple-channel stimuli.
    Francart T; Lenssen A; Wouters J
    Audiol Neurootol; 2011; 16(2):82-92. PubMed ID: 20571259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaural level difference cues determine sound source localization by single-sided deaf patients fit with a cochlear implant.
    Dorman MF; Zeitler D; Cook SJ; Loiselle L; Yost WA; Wanna GB; Gifford RH
    Audiol Neurootol; 2015; 20(3):183-8. PubMed ID: 25896774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binaural hearing in children using Gaussian enveloped and transposed tones.
    Ehlers E; Kan A; Winn MB; Stoelb C; Litovsky RY
    J Acoust Soc Am; 2016 Apr; 139(4):1724. PubMed ID: 27106319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.