BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23440673)

  • 1. Elucidation of relaxin-3 binding interactions in the extracellular loops of RXFP3.
    Bathgate RA; Oh MH; Ling WJ; Kaas Q; Hossain MA; Gooley PR; Rosengren KJ
    Front Endocrinol (Lausanne); 2013; 4():13. PubMed ID: 23440673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor.
    Wong LLL; Scott DJ; Hossain MA; Kaas Q; Rosengren KJ; Bathgate RAD
    J Biol Chem; 2018 Oct; 293(41):15777-15789. PubMed ID: 30131340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The highly conserved negatively charged Glu141 and Asp145 of the G-protein-coupled receptor RXFP3 interact with the highly conserved positively charged arginine residues of relaxin-3.
    Zhang WJ; Wang XY; Guo YQ; Luo X; Gao XJ; Shao XX; Liu YL; Xu ZG; Guo ZY
    Amino Acids; 2014 May; 46(5):1393-402. PubMed ID: 24615237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3.
    Liu Y; Zhang L; Shao XX; Hu MJ; Liu YL; Xu ZG; Guo ZY
    Arch Biochem Biophys; 2016 Aug; 604():113-20. PubMed ID: 27353281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of hydrophobic interactions between relaxin-3 and its receptor RXFP3: implication for a conformational change in the B-chain C-terminus during receptor binding.
    Hu MJ; Shao XX; Wang JH; Wei D; Liu YL; Xu ZG; Guo ZY
    Amino Acids; 2016 Sep; 48(9):2227-36. PubMed ID: 27193232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic interactions of relaxin family peptide receptor 3 with ligands identified using a NanoBiT-based binding assay.
    Li HZ; Li N; Shao XX; Liu YL; Xu ZG; Guo ZY
    Biochimie; 2020 Oct; 177():117-126. PubMed ID: 32810565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrostatic interactions of relaxin-3 with receptor RXFP4 and the influence of its B-chain C-terminal conformation.
    Wang XY; Guo YQ; Zhang WJ; Shao XX; Liu YL; Xu ZG; Guo ZY
    FEBS J; 2014 Jul; 281(13):2927-36. PubMed ID: 24802387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands.
    Wang JH; Hu MJ; Shao XX; Wei D; Liu YL; Xu ZG; Guo ZY
    Arch Biochem Biophys; 2018 May; 646():24-30. PubMed ID: 29601823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H2 relaxin is a biased ligand relative to H3 relaxin at the relaxin family peptide receptor 3 (RXFP3).
    van der Westhuizen ET; Christopoulos A; Sexton PM; Wade JD; Summers RJ
    Mol Pharmacol; 2010 May; 77(5):759-72. PubMed ID: 20159943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding conformation and determinants of a single-chain peptide antagonist at the relaxin-3 receptor RXFP3.
    Haugaard-Kedström LM; Lee HS; Jones MV; Song A; Rathod V; Hossain MA; Bathgate RAD; Rosengren KJ
    J Biol Chem; 2018 Oct; 293(41):15765-15776. PubMed ID: 30131342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of biased agonism by Gα
    Jayakody T; Inoue A; Kannan S; Nakamura G; Kawakami K; Mendis K; Nguyen TB; Li J; Herr DR; Verma CS; Dawe GS
    Sci Signal; 2024 Feb; 17(823):eabl5880. PubMed ID: 38349968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Use of Helicogenic Amino Acids for Optimising Single Chain Relaxin-3 Peptide Agonists.
    Lee HS; Wang SH; Daniel JT; Hossain MA; Clark RJ; Bathgate RAD; Rosengren KJ
    Biomedicines; 2020 Oct; 8(10):. PubMed ID: 33066369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the functional domains of relaxin-3 and the creation of a selective antagonist for RXFP3/GPCR135 over relaxin receptor RXFP1/LGR7.
    Liu C; Kuei C; Sutton S; Shelton J; Zhu J; Nepomuceno D; Hossain MA; Wade JD; Bathgate RA; Bonaventure P; Lovenberg T
    Ann N Y Acad Sci; 2009 Apr; 1160():31-7. PubMed ID: 19416155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a synthetic relaxin-3/INSL5 chimeric peptide ligand for NanoBiT complementation binding assays.
    Wu H; Hoare BL; Handley TNG; Akhter Hossain M; Bathgate RAD
    Biochem Pharmacol; 2024 Jun; 224():116238. PubMed ID: 38677442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural and functional role of the B-chain C-terminal arginine in the relaxin-3 peptide antagonist, R3(BDelta23-27)R/I5.
    Hossain MA; Bathgate RA; Rosengren KJ; Shabanpoor F; Zhang S; Lin F; Tregear GW; Wade JD
    Chem Biol Drug Des; 2009 Jan; 73(1):46-52. PubMed ID: 19152634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signalling profiles of H3 relaxin, H2 relaxin and R3(BΔ23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3).
    Kocan M; Sarwar M; Hossain MA; Wade JD; Summers RJ
    Br J Pharmacol; 2014 Jun; 171(11):2827-41. PubMed ID: 24641548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimization of human relaxin-3 leading to high-affinity analogues with increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1.
    Shabanpoor F; Akhter Hossain M; Ryan PJ; Belgi A; Layfield S; Kocan M; Zhang S; Samuel CS; Gundlach AL; Bathgate RA; Separovic F; Wade JD
    J Med Chem; 2012 Feb; 55(4):1671-81. PubMed ID: 22257012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency.
    Alvarez-Jaimes L; Sutton SW; Nepomuceno D; Motley ST; Cik M; Stocking E; Shoblock J; Bonaventure P
    PLoS One; 2012; 7(2):e30792. PubMed ID: 22347403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3.
    Haugaard-Kedström LM; Shabanpoor F; Hossain MA; Clark RJ; Ryan PJ; Craik DJ; Gundlach AL; Wade JD; Bathgate RA; Rosengren KJ
    J Am Chem Soc; 2011 Apr; 133(13):4965-74. PubMed ID: 21384867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal.
    Hosken IT; Sutton SW; Smith CM; Gundlach AL
    Behav Brain Res; 2015 Feb; 278():167-75. PubMed ID: 25257104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.