These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23440746)

  • 1. A new approach to studying ion uptake by actinomycetes.
    Nakouti I; Hobbs G
    J Basic Microbiol; 2013 Nov; 53(11):913-6. PubMed ID: 23440746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method.
    Schwabe R; Anke MK; Szymańska K; Wiche O; Tischler D
    Res Microbiol; 2018 Dec; 169(10):598-607. PubMed ID: 30138722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.
    Gaonkar T; Bhosle S
    Chemosphere; 2013 Nov; 93(9):1835-43. PubMed ID: 23838040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of arsenic-binding siderophores in arsenic-tolerating Actinobacteria by a modified CAS assay.
    Retamal-Morales G; Mehnert M; Schwabe R; Tischler D; Zapata C; Chávez R; Schlömann M; Levicán G
    Ecotoxicol Environ Saf; 2018 Aug; 157():176-181. PubMed ID: 29621709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits.
    Cruz-Morales P; Ramos-Aboites HE; Licona-Cassani C; Selem-Mójica N; Mejía-Ponce PM; Souza-Saldívar V; Barona-Gómez F
    FEMS Microbiol Ecol; 2017 Sep; 93(9):. PubMed ID: 28910965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.
    Dimkpa CO; Svatos A; Dabrowska P; Schmidt A; Boland W; Kothe E
    Chemosphere; 2008 Dec; 74(1):19-25. PubMed ID: 18986679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Siderophore production by actinomycetes isolates from two soil sites in Western Australia.
    Lee J; Postmaster A; Soon HP; Keast D; Carson KC
    Biometals; 2012 Apr; 25(2):285-96. PubMed ID: 22038645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440.
    Ejje N; Soe CZ; Gu J; Codd R
    Metallomics; 2013 Nov; 5(11):1519-28. PubMed ID: 24121533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple assay for screening microorganisms for chalkophore production.
    Yoon S; Dispirito AA; Kraemer SM; Semrau JD
    Methods Enzymol; 2011; 495():247-58. PubMed ID: 21419926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to isolating siderophore-producing actinobacteria.
    Nakouti I; Sihanonth P; Hobbs G
    Lett Appl Microbiol; 2012 Jul; 55(1):68-72. PubMed ID: 22537552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition among Nasal Bacteria Suggests a Role for Siderophore-Mediated Interactions in Shaping the Human Nasal Microbiota.
    Stubbendieck RM; May DS; Chevrette MG; Temkin MI; Wendt-Pienkowski E; Cagnazzo J; Carlson CM; Gern JE; Currie CR
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30578265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Siderophore-based detection of Fe(III) and microbial pathogens.
    Zheng T; Nolan EM
    Metallomics; 2012 Aug; 4(9):866-80. PubMed ID: 22854844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Siderophore production by actinobacteria.
    Wang W; Qiu Z; Tan H; Cao L
    Biometals; 2014 Aug; 27(4):623-31. PubMed ID: 24770987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation dependent formation of siderophores by Gordonia rubripertincta CWB2.
    Schwabe R; Senges CHR; Bandow JE; Heine T; Lehmann H; Wiche O; Schlömann M; Levicán G; Tischler D
    Microbiol Res; 2020 Sep; 238():126481. PubMed ID: 32497965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance.
    Braud A; Geoffroy V; Hoegy F; Mislin GL; Schalk IJ
    Environ Microbiol Rep; 2010 Jun; 2(3):419-25. PubMed ID: 23766115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecology of siderophores with special reference to the fungi.
    Winkelmann G
    Biometals; 2007 Jun; 20(3-4):379-92. PubMed ID: 17235665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate of siderophores: antagonistic environmental interactions in exudate-mediated micronutrient uptake.
    Harrington JM; Duckworth OW; Haselwandter K
    Biometals; 2015 Jun; 28(3):461-72. PubMed ID: 25619589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway.
    Schalk IJ
    J Inorg Biochem; 2008; 102(5-6):1159-69. PubMed ID: 18221784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis.
    Khan A; Gupta A; Singh P; Mishra AK; Ranjan RK; Srivastava A
    Int Microbiol; 2020 May; 23(2):277-286. PubMed ID: 31655918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view.
    Chu BC; Garcia-Herrero A; Johanson TH; Krewulak KD; Lau CK; Peacock RS; Slavinskaya Z; Vogel HJ
    Biometals; 2010 Aug; 23(4):601-11. PubMed ID: 20596754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.