These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1138 related articles for article (PubMed ID: 23440956)

  • 1. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries.
    Zhou M; Pu F; Wang Z; Cai T; Chen H; Zhang H; Guan S
    Phys Chem Chem Phys; 2013 Jul; 15(27):11394-401. PubMed ID: 23740151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries.
    Tao H; Fan LZ; Song WL; Wu M; He X; Qu X
    Nanoscale; 2014 Mar; 6(6):3138-42. PubMed ID: 24496138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode.
    Sun F; Huang K; Qi X; Gao T; Liu Y; Zou X; Wei X; Zhong J
    Nanoscale; 2013 Sep; 5(18):8586-92. PubMed ID: 23893258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries.
    Xue L; Xu G; Li Y; Li S; Fu K; Shi Q; Zhang X
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):21-5. PubMed ID: 23206443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermally reduced graphene as high-power anodes for lithium-ion batteries.
    Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N
    ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries.
    Wang JZ; Zhong C; Wexler D; Idris NH; Wang ZX; Chen LQ; Liu HK
    Chemistry; 2011 Jan; 17(2):661-7. PubMed ID: 21207587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage.
    Chen D; Quan H; Liang J; Guo L
    Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-encapsulated hollow Fe₃O₄ nanoparticle aggregates as a high-performance anode material for lithium ion batteries.
    Chen D; Ji G; Ma Y; Lee JY; Lu J
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3078-83. PubMed ID: 21749101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes.
    Luo J; Zhao X; Wu J; Jang HD; Kung HH; Huang J
    J Phys Chem Lett; 2012 Jul; 3(13):1824-9. PubMed ID: 26291867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode.
    Chang J; Huang X; Zhou G; Cui S; Hallac PB; Jiang J; Hurley PT; Chen J
    Adv Mater; 2014 Feb; 26(5):758-64. PubMed ID: 24115353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-Aqueous Directed Assembly Strategy for Forming High-Capacity, Stable Silicon/Carbon Anodes for Lithium-Ion Batteries.
    Chen Y; Xu M; Zhang Y; Pan Y; Lucht BL; Bose A
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21391-7. PubMed ID: 26355591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning density of Si nanoparticles on graphene sheets in graphene-Si aerogels for stable lithium ion batteries.
    Hu X; Jin Y; Zhu B; Liu Z; Xu D; Guan Y; Sun M; Liu F
    J Colloid Interface Sci; 2018 Dec; 532():738-745. PubMed ID: 30125838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes.
    Wang B; Li X; Luo B; Jia Y; Zhi L
    Nanoscale; 2013 Feb; 5(4):1470-4. PubMed ID: 23334474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multilayered silicon-reduced graphene oxide electrode for high performance lithium-ion batteries.
    Gao X; Li J; Xie Y; Guan D; Yuan C
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7855-62. PubMed ID: 25826636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.