BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23441112)

  • 1. Changes in zebrafish (Danio rerio) lens crystallin content during development.
    Wages P; Horwitz J; Ding L; Corbin RW; Posner M
    Mol Vis; 2013; 19():408-17. PubMed ID: 23441112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression.
    Posner M; Hawke M; Lacava C; Prince CJ; Bellanco NR; Corbin RW
    Mol Vis; 2008 Apr; 14():806-14. PubMed ID: 18449354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ; David LL; Riviere MA; Wilmarth PA; Muir MS; Morton JD
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1016-22. PubMed ID: 18326725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lens growth and protein changes in the eastern grey kangaroo.
    Augusteyn RC
    Mol Vis; 2011; 17():3234-42. PubMed ID: 22194649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells.
    Wang X; Garcia CM; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallin distribution patterns in concentric layers from toad eye lenses.
    Keenan J; Elia G; Dunn MJ; Orr DF; Pierscionek BK
    Proteomics; 2009 Dec; 9(23):5340-9. PubMed ID: 19813212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ
    Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y; Bi H; Li N; Jin H; Yang P; Kong X; Yan S; Lu Y
    Mol Vis; 2010 Jun; 16():1068-75. PubMed ID: 20596256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The zebrafish lens proteome during development and aging.
    Greiling TM; Houck SA; Clark JI
    Mol Vis; 2009 Nov; 15():2313-25. PubMed ID: 19936306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of crystallin distribution in porcine eye lenses.
    Keenan J; Orr DF; Pierscionek BK
    Mol Vis; 2008 Jul; 14():1245-53. PubMed ID: 18615203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens proteome map and alpha-crystallin profile of the catfish Rita rita.
    Mohanty BP; Bhattacharjee S; Das MK
    Indian J Biochem Biophys; 2011 Feb; 48(1):35-41. PubMed ID: 21469600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlphaA-crystallin expression prevents gamma-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens.
    Goishi K; Shimizu A; Najarro G; Watanabe S; Rogers R; Zon LI; Klagsbrun M
    Development; 2006 Jul; 133(13):2585-93. PubMed ID: 16728471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L; Liu D; Liu P; Yu Y
    Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling.
    Asomugha CO; Gupta R; Srivastava OP
    Mol Vis; 2010 Mar; 16():476-94. PubMed ID: 20352024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age.
    Ueda Y; Duncan MK; David LL
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):205-15. PubMed ID: 11773033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of crystallins and lipids from the lens of Antarctic toothfish and cow.
    Kiss AJ; Devries AL; Morgan-Kiss RM
    J Comp Physiol B; 2010 Oct; 180(7):1019-32. PubMed ID: 20490507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses.
    Srivastava OP; Srivastava K; Chaves JM
    Mol Vis; 2008; 14():1872-85. PubMed ID: 18949065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.