These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 23441750)

  • 41. Collagen deposition in the subcutaneous tissue during wound healing in humans: a model evaluation.
    Jørgensen LN
    APMIS Suppl; 2003; (115):1-56. PubMed ID: 14625992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic analysis of skin wound healing and scarring in a porcine model.
    Gallant-Behm CL; Hart DA
    Wound Repair Regen; 2006; 14(1):46-54. PubMed ID: 16476071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo gene delivery of Ad-VEGF121 to full-thickness wounds in aged pigs results in high levels of VEGF expression but not in accelerated healing.
    Vranckx JJ; Yao F; Petrie N; Augustinova H; Hoeller D; Visovatti S; Slama J; Eriksson E
    Wound Repair Regen; 2005; 13(1):51-60. PubMed ID: 15659036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A preliminary study on the effect of manuka honey on second-intention healing of contaminated wounds on the distal aspect of the forelimbs of horses.
    Bischofberger AS; Dart CM; Perkins NR; Dart AJ
    Vet Surg; 2011 Oct; 40(7):898-902. PubMed ID: 22380675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Platelet-derived growth factor acts via both the Rho-kinase and p38 signaling enzymes to stimulate contraction in an in vitro model of equine wound healing.
    Watts EJ; Rose MT
    Domest Anim Endocrinol; 2010 May; 38(4):253-9. PubMed ID: 20036481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of occlusive dressings for management of full-thickness excisional wounds on the distal portion of the limbs of horses.
    Howard RD; Stashak TS; Baxter GM
    Am J Vet Res; 1993 Dec; 54(12):2150-4. PubMed ID: 8116952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of MMP1 in surgical and radiation-impaired wound healing and its effects on the healing process.
    Gu Q; Wang D; Gao Y; Zhou J; Peng R; Cui Y; Xia G; Qing Q; Yang H; Liu J; Zhao M
    J Environ Pathol Toxicol Oncol; 2002; 21(1):71-8. PubMed ID: 11934016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physiology of wound healing.
    Hunt TK; Hopf H; Hussain Z
    Adv Skin Wound Care; 2000; 13(2 Suppl):6-11. PubMed ID: 11074996
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with hydrosheets composed of chitin/chitosan, fucoidan, and alginate as wound dressings.
    Murakami K; Ishihara M; Aoki H; Nakamura S; Nakamura S; Yanagibayashi S; Takikawa M; Kishimoto S; Yokoe H; Kiyosawa T; Sato Y
    Wound Repair Regen; 2010; 18(5):478-85. PubMed ID: 20731799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [New views on the physiology of wound healing].
    Komarcević A; Pejakov L; Komarcević M
    Med Pregl; 2000; 53(9-10):479-83. PubMed ID: 11320729
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling of wound healing processes in human skin using tissue culture.
    Kratz G
    Microsc Res Tech; 1998 Sep; 42(5):345-50. PubMed ID: 9766429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Topical treatments in equine wound management.
    Dart AJ; Dowling BA; Smith CL
    Vet Clin North Am Equine Pract; 2005 Apr; 21(1):77-89, vi-vii. PubMed ID: 15691601
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised wound healing model.
    Martínez-Santamaría L; Conti CJ; Llames S; García E; Retamosa L; Holguín A; Illera N; Duarte B; Camblor L; Llaneza JM; Jorcano JL; Larcher F; Meana Á; Escámez MJ; Del Río M
    Exp Dermatol; 2013 Mar; 22(3):195-201. PubMed ID: 23489422
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regenerative materials that facilitate wound healing.
    Mulder G; Wallin K; Tenenhaus M
    Clin Plast Surg; 2012 Jul; 39(3):249-67. PubMed ID: 22732374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Equine CTNNB1 and PECAM1 nucleotide structure and expression analyses in an experimental model of normal and pathological wound repair.
    Miragliotta V; Ipiña Z; Lefebvre-Lavoie J; Lussier JG; Theoret CL
    BMC Physiol; 2008 Jan; 8():1. PubMed ID: 18237399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The future of wound healing: pursuing surgical models in transgenic and knockout mice.
    Reid RR; Said HK; Mogford JE; Mustoe TA
    J Am Coll Surg; 2004 Oct; 199(4):578-85. PubMed ID: 15454143
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation.
    Xia YP; Zhao Y; Marcus J; Jimenez PA; Ruben SM; Moore PA; Khan F; Mustoe TA
    J Pathol; 1999 Aug; 188(4):431-8. PubMed ID: 10440755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of dressings and bandages in equine wound management.
    Gomez JH; Hanson RR
    Vet Clin North Am Equine Pract; 2005 Apr; 21(1):91-104, vii. PubMed ID: 15691602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Introduction. Healing chronic wounds: technologic solutions for today and tomorrow.
    Adv Skin Wound Care; 2000; 13(2 Suppl):4-5. PubMed ID: 11074995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Animal models for adult dermal wound healing.
    Birch M; Tomlinson A; Ferguson MW
    Methods Mol Med; 2005; 117():223-35. PubMed ID: 16118455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.