BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23441938)

  • 1. Coupling pH-responsive polymer brushes to electricity: switching thickness and creating waves of swelling or collapse.
    Dunderdale GJ; Fairclough JP
    Langmuir; 2013 Mar; 29(11):3628-35. PubMed ID: 23441938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-induced swelling and deswelling of weak polybase brushes.
    Weir MP; Heriot SY; Martin SJ; Parnell AJ; Holt SA; Webster JR; Jones RA
    Langmuir; 2011 Sep; 27(17):11000-7. PubMed ID: 21793596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing pH-responsive interactions between polymer brushes and hydrogels by neutron reflectivity.
    Sudre G; Hourdet D; Creton C; Cousin F; Tran Y
    Langmuir; 2014 Aug; 30(32):9700-6. PubMed ID: 25099624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical gating with nanostructured responsive polymer brushes: mixed brush versus homopolymer brush.
    Motornov M; Sheparovych R; Katz E; Minko S
    ACS Nano; 2008 Jan; 2(1):41-52. PubMed ID: 19206546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability.
    de Groot GW; Santonicola MG; Sugihara K; Zambelli T; Reimhult E; Vörös J; Vancso GJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1400-7. PubMed ID: 23360664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switchable friction using contacts of stimulus-responsive and nonresponding swollen polymer brushes.
    de Beer S
    Langmuir; 2014 Jul; 30(27):8085-90. PubMed ID: 24954240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the Switching of Single BSA-ATTO 488 Molecules Covalently End-Attached to a pH-Responsive PAA Brush.
    Akkilic N; Molenaar R; Claessens MM; Blum C; de Vos WM
    Langmuir; 2016 Sep; 32(35):8803-11. PubMed ID: 27525503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces.
    Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ
    Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical salt effects in the swelling behavior of a weak polybasic brush.
    Willott JD; Murdoch TJ; Humphreys BA; Edmondson S; Webber GB; Wanless EJ
    Langmuir; 2014 Feb; 30(7):1827-36. PubMed ID: 24476028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer brushes with phototriggered and phototunable swelling and pH response.
    Cui J; Azzaroni O; del Campo A
    Macromol Rapid Commun; 2011 Nov; 32(21):1699-703. PubMed ID: 21993995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible "closing" of an electrode interface functionalized with a polymer brush by an electrochemical signal.
    Tam TK; Pita M; Trotsenko O; Motornov M; Tokarev I; Halámek J; Minko S; Katz E
    Langmuir; 2010 Mar; 26(6):4506-13. PubMed ID: 20000630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible electrochemical switching of polyelectrolyte brush surface energy using electroactive counterions.
    Spruijt E; Choi EY; Huck WT
    Langmuir; 2008 Oct; 24(19):11253-60. PubMed ID: 18778088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemically mediated atom transfer radical polymerization from a substrate surface manipulated by bipolar electrolysis: fabrication of gradient and patterned polymer brushes.
    Shida N; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3922-6. PubMed ID: 25704396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer brushes: routes toward mechanosensitive surfaces.
    Bünsow J; Kelby TS; Huck WT
    Acc Chem Res; 2010 Mar; 43(3):466-74. PubMed ID: 20038136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments.
    Aulich D; Hoy O; Luzinov I; Brücher M; Hergenröder R; Bittrich E; Eichhorn KJ; Uhlmann P; Stamm M; Esser N; Hinrichs K
    Langmuir; 2010 Aug; 26(15):12926-32. PubMed ID: 20602533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyelectrolyte brush pH-response at the silica-aqueous solution interface: a kinetic and equilibrium investigation.
    Cheesman BT; Smith EG; Murdoch TJ; Guibert C; Webber GB; Edmondson S; Wanless EJ
    Phys Chem Chem Phys; 2013 Sep; 15(34):14502-10. PubMed ID: 23897091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responsive Adsorption of
    Sudre G; Siband E; Gallas B; Cousin F; Hourdet D; Tran Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes.
    Kopyshev A; Galvin CJ; Patil RR; Genzer J; Lomadze N; Feldmann D; Zakrevski J; Santer S
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):19175-84. PubMed ID: 27351592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.