These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23442034)

  • 1. Forest of gold nanowires: a new type of nanocrystal growth.
    He J; Wang Y; Feng Y; Qi X; Zeng Z; Liu Q; Teo WS; Gan CL; Zhang H; Chen H
    ACS Nano; 2013 Mar; 7(3):2733-40. PubMed ID: 23442034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Substrate-Bound Au Nanowires Via an Active Surface Growth Mechanism.
    Wang X; Wu X; He J; Tao X; Li H; Zhao G; Wang Y; Chen H
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30080206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-bound growth of Au-Pd diblock nanowire and hybrid nanorod-plate.
    He J; Wang Y; Fan Z; Lam Z; Zhang H; Liu B; Chen H
    Nanoscale; 2015 May; 7(17):8115-21. PubMed ID: 25874443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size- and shape-dependent growth of fluorescent ZnS nanorods and nanowires using Ag nanocrystals as seeds.
    Shen H; Shang H; Niu J; Xu W; Wang H; Li LS
    Nanoscale; 2012 Oct; 4(20):6509-14. PubMed ID: 22965175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coassembly of graphene oxide and nanowires for large-area nanowire alignment.
    Li Y; Wu Y
    J Am Chem Soc; 2009 Apr; 131(16):5851-7. PubMed ID: 19348420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the growth mode of nanowires via the interaction among seeds, substrates and beam fluxes.
    Zannier V; Grillo V; Martelli F; Plaisier JR; Lausi A; Rubini S
    Nanoscale; 2014 Jul; 6(14):8392-9. PubMed ID: 24942288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Thiolated Ligands in Au Nanowire Synthesis.
    Wang Y; He J; Yu S; Chen H
    Small; 2017 Oct; 13(40):. PubMed ID: 28857468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective-area vapour-liquid-solid growth of InP nanowires.
    Dalacu D; Kam A; Guy Austing D; Wu X; Lapointe J; Aers GC; Poole PJ
    Nanotechnology; 2009 Sep; 20(39):395602. PubMed ID: 19724116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate.
    Tomioka K; Kobayashi Y; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2009 Apr; 20(14):145302. PubMed ID: 19420521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern-selective epitaxial growth of twin-free Pd nanowires from supported nanocrystal seeds.
    Yoo Y; Yoon I; Lee H; Ahn J; Ahn JP; Kim B
    ACS Nano; 2010 May; 4(5):2919-27. PubMed ID: 20455529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual Rh nanocrystal morphology control by hetero-epitaxially growing Rh on Au@Pt nanowires with numerous vertical twinning boundaries.
    An H; Khi NT; Yoon J; Lee H; Baik H; Sohn JH; Lee K
    Nanoscale; 2015 May; 7(18):8309-14. PubMed ID: 25882776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.
    Bhatta UM; Rath A; Dash JK; Ghatak J; Yi-Feng L; Liu CP; Satyam PV
    Nanotechnology; 2009 Nov; 20(46):465601. PubMed ID: 19843987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature growth of ultrathin Au nanowires with high areal density over large areas by in situ functionalization of substrate.
    Kundu S; Leelavathi A; Madras G; Ravishankar N
    Langmuir; 2014 Oct; 30(42):12690-5. PubMed ID: 25279505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of the field effect mobility of solution-grown germanium nanowires.
    Schricker AD; Joshi SV; Hanrath T; Banerjee SK; Korgel BA
    J Phys Chem B; 2006 Apr; 110(13):6816-23. PubMed ID: 16570990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires.
    Neretina S; Hughes RA; Devenyi GA; Sochinskii NV; Preston JS; Mascher P
    Nanotechnology; 2008 May; 19(18):185601. PubMed ID: 21825689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective growth of Ge nanowires by low-temperature thermal evaporation.
    Sutter E; Ozturk B; Sutter P
    Nanotechnology; 2008 Oct; 19(43):435607. PubMed ID: 21832702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct.
    Black K; Jones AC; Alexandrou I; Heys PN; Chalker PR
    Nanotechnology; 2010 Jan; 21(4):045701. PubMed ID: 20009167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport.
    Kuo TJ; Huang MH
    J Phys Chem B; 2006 Jul; 110(28):13717-21. PubMed ID: 16836315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.