These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 234421)

  • 1. l-amino acid oxidases of Proteus rettgeri.
    Duerre JA; Chakrabarty S
    J Bacteriol; 1975 Feb; 121(2):656-63. PubMed ID: 234421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple histidine degrading enzymes in Proteus vulgaris.
    Wickramasinghe RH
    Experientia; 1970 Jan; 26(1):37-8. PubMed ID: 5412289
    [No Abstract]   [Full Text] [Related]  

  • 3. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.
    Khangulov SV; Sossong TM; Ash DE; Dismukes GC
    Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid metabolism in chameleon liver.
    Herbert JD; Coulson RA
    Comp Biochem Physiol B; 1972 Jul; 42(3):463-73. PubMed ID: 4644217
    [No Abstract]   [Full Text] [Related]  

  • 5. Amino acid metabolism in chameleon tissues.
    Herbert JD
    Comp Biochem Physiol B; 1973 Oct; 46(2):229-43. PubMed ID: 4757951
    [No Abstract]   [Full Text] [Related]  

  • 6. A new transport interaction of dibasic amino acids and citrulline in human kidney.
    Oyanagi K; Sogawa H; Minami R; Nakao T; Karube K; Tsugawa S
    Tohoku J Exp Med; 1981 May; 134(1):55-8. PubMed ID: 6797099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on monooxygenases. V. Manifestation of amino acid oxidase activity by L-lysine monooxygenase.
    Nakazawa T; Hori K; Hayaishi O
    J Biol Chem; 1972 Jun; 247(11):3439-44. PubMed ID: 4624115
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanistic insights into the dual activities of the single active site of l-lysine oxidase/monooxygenase from
    Trisrivirat D; Lawan N; Chenprakhon P; Matsui D; Asano Y; Chaiyen P
    J Biol Chem; 2020 Aug; 295(32):11246-11261. PubMed ID: 32527725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative deamination of sulfur amino acids by bacterial and snake venom L-amino acid oxidase.
    Chen SS; Walgate JH; Duerre JA
    Arch Biochem Biophys; 1971 Sep; 146(1):54-63. PubMed ID: 5169142
    [No Abstract]   [Full Text] [Related]  

  • 10. Mutant of Escherichia coli K-12 defective in the transport of basic amino acids.
    Celis TF; Rosenfeld HJ; Maas WK
    J Bacteriol; 1973 Nov; 116(2):619-26. PubMed ID: 4583243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basis of transport discrimination of arginine from other basic amino acids in Salmonella typhimurium.
    Quay S; Christensen HN
    J Biol Chem; 1974 Nov; 249(21):7011-7. PubMed ID: 4609082
    [No Abstract]   [Full Text] [Related]  

  • 12. The participation of ornithine and citrulline in the regulation of arginine metabolism in Saccharomyces cerevisiae.
    Ramos F; Thuriaux P; Wiame JM; Bechet J
    Eur J Biochem; 1970 Jan; 12(1):40-7. PubMed ID: 5434282
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolism of basic amino acids in Pseudomonas putida. Transport of lysine, ornithine, and arginine.
    Fan CL; Miller DL; Rodwell VW
    J Biol Chem; 1972 Apr; 247(8):2283-8. PubMed ID: 5019949
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification and characterization of an L-amino acid oxidase from Pseudomonas sp. AIU 813.
    Isobe K; Sugawara A; Domon H; Fukuta Y; Asano Y
    J Biosci Bioeng; 2012 Sep; 114(3):257-61. PubMed ID: 22704811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dark respiration of Anacystis nidulans. Production of HCN from histidine and oxidation of basic amino acids.
    Pistorius EK; Jetschmann K; Voss H; Vennesland B
    Biochim Biophys Acta; 1979 Jul; 585(4):630-42. PubMed ID: 223652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: function of the arginine oxidase and arginine succinyltransferase pathways.
    Tricot C; Stalon V; Legrain C
    J Gen Microbiol; 1991 Dec; 137(12):2911-8. PubMed ID: 1791443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The subcellular distribution of free H3-glutamic acid in rat cerebral cortical slices.
    Kuhar MJ; Snyder SH
    J Pharmacol Exp Ther; 1970 Jan; 171(1):141-52. PubMed ID: 5410932
    [No Abstract]   [Full Text] [Related]  

  • 18. L-amino acid oxidases with specificity for basic L-amino acids in cyanobacteria.
    Gau AE; Heindl A; Nodop A; Kahmann U; Pistorius EK
    Z Naturforsch C J Biosci; 2007; 62(3-4):273-84. PubMed ID: 17542496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for multiple ligand specificity of the periplasmic lysine-, arginine-, ornithine-binding protein.
    Oh BH; Ames GF; Kim SH
    J Biol Chem; 1994 Oct; 269(42):26323-30. PubMed ID: 7929349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine.
    Arena ME; Saguir FM; Manca de Nadra MC
    Int J Food Microbiol; 1999 Nov; 52(3):155-61. PubMed ID: 10733246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.