BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 23442138)

  • 21. Chromosome territories, nuclear architecture and gene regulation in mammalian cells.
    Cremer T; Cremer C
    Nat Rev Genet; 2001 Apr; 2(4):292-301. PubMed ID: 11283701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reorganization of RNA polymerase II on the SV40 genome occurs coordinately with the early to late transcriptional switch.
    Balakrishnan L; Milavetz B
    Virology; 2006 Feb; 345(1):31-43. PubMed ID: 16242748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct visualization of cardiac transcription factories reveals regulatory principles of nuclear architecture during pathological remodeling.
    Karbassi E; Rosa-Garrido M; Chapski DJ; Wu Y; Ren S; Wang Y; Stefani E; Vondriska TM
    J Mol Cell Cardiol; 2019 Mar; 128():198-211. PubMed ID: 30742811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.
    Mitchell JA; Clay I; Umlauf D; Chen CY; Moir CA; Eskiw CH; Schoenfelder S; Chakalova L; Nagano T; Fraser P
    PLoS One; 2012; 7(11):e49274. PubMed ID: 23209567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei.
    Schubert V; Weisshart K
    J Exp Bot; 2015 Mar; 66(6):1687-98. PubMed ID: 25740920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coding RNAs with a non-coding function: maintenance of open chromatin structure.
    Caudron-Herger M; Müller-Ott K; Mallm JP; Marth C; Schmidt U; Fejes-Tóth K; Rippe K
    Nucleus; 2011; 2(5):410-24. PubMed ID: 21983088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial organization of RNA polymerase II transcription in the nucleus.
    Szentirmay MN; Sawadogo M
    Nucleic Acids Res; 2000 May; 28(10):2019-25. PubMed ID: 10773068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo live imaging of RNA polymerase II transcription factories in primary cells.
    Ghamari A; van de Corput MP; Thongjuea S; van Cappellen WA; van Ijcken W; van Haren J; Soler E; Eick D; Lenhard B; Grosveld FG
    Genes Dev; 2013 Apr; 27(7):767-77. PubMed ID: 23592796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II.
    Nagashima R; Hibino K; Ashwin SS; Babokhov M; Fujishiro S; Imai R; Nozaki T; Tamura S; Tani T; Kimura H; Shribak M; Kanemaki MT; Sasai M; Maeshima K
    J Cell Biol; 2019 May; 218(5):1511-1530. PubMed ID: 30824489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear architecture and gene regulation.
    Fedorova E; Zink D
    Biochim Biophys Acta; 2008 Nov; 1783(11):2174-84. PubMed ID: 18718493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial organization of active and inactive genes and noncoding DNA within chromosome territories.
    Mahy NL; Perry PE; Gilchrist S; Baldock RA; Bickmore WA
    J Cell Biol; 2002 May; 157(4):579-89. PubMed ID: 11994314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin.
    Nagy PL; Cleary ML; Brown PO; Lieb JD
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6364-9. PubMed ID: 12750471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription factories and nuclear organization of the genome.
    Eskiw CH; Cope NF; Clay I; Schoenfelder S; Nagano T; Fraser P
    Cold Spring Harb Symp Quant Biol; 2010; 75():501-6. PubMed ID: 21467135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene activation and deactivation related changes in the three-dimensional structure of chromatin.
    Wegel E; Shaw P
    Chromosoma; 2005 Nov; 114(5):331-7. PubMed ID: 16075283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dynamics of chromosome organization and gene regulation.
    Spector DL
    Annu Rev Biochem; 2003; 72():573-608. PubMed ID: 14527325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription factories in the context of the nuclear and genome organization.
    Razin SV; Gavrilov AA; Pichugin A; Lipinski M; Iarovaia OV; Vassetzky YS
    Nucleic Acids Res; 2011 Nov; 39(21):9085-92. PubMed ID: 21880598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear myosin VI enhances RNA polymerase II-dependent transcription.
    Vreugde S; Ferrai C; Miluzio A; Hauben E; Marchisio PC; Crippa MP; Bussi M; Biffo S
    Mol Cell; 2006 Sep; 23(5):749-55. PubMed ID: 16949370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myosin VI regulates the spatial organisation of mammalian transcription initiation.
    Hari-Gupta Y; Fili N; Dos Santos Á; Cook AW; Gough RE; Reed HCW; Wang L; Aaron J; Venit T; Wait E; Grosse-Berkenbusch A; Gebhardt JCM; Percipalle P; Chew TL; Martin-Fernandez M; Toseland CP
    Nat Commun; 2022 Mar; 13(1):1346. PubMed ID: 35292632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear Phosphoinositides-Versatile Regulators of Genome Functions.
    Castano E; Yildirim S; Fáberová V; Krausová A; Uličná L; Paprčková D; Sztacho M; Hozák P
    Cells; 2019 Jun; 8(7):. PubMed ID: 31261688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin domains and nuclear compartments: establishing sites of gene expression in eukaryotic nuclei.
    Jackson DA
    Mol Biol Rep; 1997 Aug; 24(3):209-20. PubMed ID: 9291094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.