These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 23442171)
1. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides). Sun Z; Niinemets Ü; Hüve K; Rasulov B; Noe SM New Phytol; 2013 May; 198(3):788-800. PubMed ID: 23442171 [TBL] [Abstract][Full Text] [Related]
2. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. Sun Z; Hüve K; Vislap V; Niinemets Ü J Exp Bot; 2013 Dec; 64(18):5509-23. PubMed ID: 24153419 [TBL] [Abstract][Full Text] [Related]
3. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen. Niinemets Ü; Sun Z J Exp Bot; 2015 Feb; 66(3):841-51. PubMed ID: 25399006 [TBL] [Abstract][Full Text] [Related]
4. Spectacular Oscillations in Plant Isoprene Emission under Transient Conditions Explain the Enigmatic CO2 Response. Rasulov B; Talts E; Niinemets Ü Plant Physiol; 2016 Dec; 172(4):2275-2285. PubMed ID: 27770061 [TBL] [Abstract][Full Text] [Related]
5. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration. Potosnak MJ; Lestourgeon L; Nunez O Sci Total Environ; 2014 May; 481():352-9. PubMed ID: 24614154 [TBL] [Abstract][Full Text] [Related]
6. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO₂. Morfopoulos C; Sperlich D; Peñuelas J; Filella I; Llusià J; Medlyn BE; Niinemets Ü; Possell M; Sun Z; Prentice IC New Phytol; 2014 Jul; 203(1):125-39. PubMed ID: 24661143 [TBL] [Abstract][Full Text] [Related]
7. Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars. Way DA; Ghirardo A; Kanawati B; Esperschütz J; Monson RK; Jackson RB; Schmitt-Kopplin P; Schnitzler JP New Phytol; 2013 Oct; 200(2):534-546. PubMed ID: 23822651 [TBL] [Abstract][Full Text] [Related]
8. Evidence That Isoprene Emission Is Not Limited by Cytosolic Metabolites. Exogenous Malate Does Not Invert the Reverse Sensitivity of Isoprene Emission to High [CO Rasulov B; Talts E; Bichele I; Niinemets Ü Plant Physiol; 2018 Feb; 176(2):1573-1586. PubMed ID: 29233849 [TBL] [Abstract][Full Text] [Related]
9. Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls. Rasulov B; Bichele I; Hüve K; Vislap V; Niinemets Ü Plant Cell Environ; 2015 Apr; 38(4):751-66. PubMed ID: 25158785 [TBL] [Abstract][Full Text] [Related]
10. Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. Calfapietra C; Scarascia Mugnozza G; Karnosky DF; Loreto F; Sharkey TD New Phytol; 2008; 179(1):55-61. PubMed ID: 18557875 [TBL] [Abstract][Full Text] [Related]
11. Can the capacity for isoprene emission acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula? Sun Z; Copolovici L; Niinemets Ü J Plant Res; 2012 Mar; 125(2):263-74. PubMed ID: 21584787 [TBL] [Abstract][Full Text] [Related]
12. Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature. Hartikainen K; Nerg AM; Kivimäenpää M; Kontunen-Soppela S; Mäenpää M; Oksanen E; Rousi M; Holopainen T Tree Physiol; 2009 Sep; 29(9):1163-73. PubMed ID: 19448266 [TBL] [Abstract][Full Text] [Related]
13. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Rosenstiel TN; Potosnak MJ; Griffin KL; Fall R; Monson RK Nature; 2003 Jan; 421(6920):256-9. PubMed ID: 12529640 [TBL] [Abstract][Full Text] [Related]
14. Induction of a longer term component of isoprene release in darkened aspen leaves: origin and regulation under different environmental conditions. Rasulov B; Hüve K; Laisk A; Niinemets Ü Plant Physiol; 2011 Jun; 156(2):816-31. PubMed ID: 21502186 [TBL] [Abstract][Full Text] [Related]
15. Facing the Future: Effects of Short-Term Climate Extremes on Isoprene-Emitting and Nonemitting Poplar. Vanzo E; Jud W; Li Z; Albert A; Domagalska MA; Ghirardo A; Niederbacher B; Frenzel J; Beemster GT; Asard H; Rennenberg H; Sharkey TD; Hansel A; Schnitzler JP Plant Physiol; 2015 Sep; 169(1):560-75. PubMed ID: 26162427 [TBL] [Abstract][Full Text] [Related]
16. Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves. Niinemets Ü; Sun Z; Talts E Plant Cell Environ; 2015 Dec; 38(12):2707-20. PubMed ID: 26037962 [TBL] [Abstract][Full Text] [Related]
17. Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Centritto M; Brilli F; Fodale R; Loreto F Tree Physiol; 2011 Mar; 31(3):275-86. PubMed ID: 21367745 [TBL] [Abstract][Full Text] [Related]
18. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927 [TBL] [Abstract][Full Text] [Related]
19. Regulation of isoprene emission in Populus trichocarpa leaves subjected to changing growth temperature. Wiberley AE; Donohue AR; Meier ME; Westphal MM; Sharkey TD Plant Cell Environ; 2008 Feb; 31(2):258-67. PubMed ID: 17996012 [TBL] [Abstract][Full Text] [Related]
20. The interacting effects of elevated atmospheric CO2 concentration, drought and leaf-to-air vapour pressure deficit on ecosystem isoprene fluxes. Pegoraro E; Rey A; Barron-Gafford G; Monson R; Malhi Y; Murthy R Oecologia; 2005 Nov; 146(1):120-9. PubMed ID: 16001217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]