These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 23442235)

  • 1. The Impact of Pulsatile Flow on Suspension Force for Hydrodynamically Levitated Blood Pump.
    Fu Y; Hu Y; Huang F; Zhou M
    J Healthc Eng; 2019; 2019():8065920. PubMed ID: 31281617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood-contacting magnetic levitation bearing design using computational fluid dynamics for haemocompatibility.
    Nissim L; Karnik S; Kiang S; Tedesco V; Ogiwara E; Kurita N; Wang Y; Frazier OH; Fraser KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next Generation Development of Hybrid Continuous Flow Pediatric Total Artificial Heart Technology: Design-Build-Test.
    Hirschhorn MD; Lawley JEM; Roof AJ; Johnson APT; Stoddard WA; Stevens RM; Rossano J; Arabia F; Tchantchaleishvili V; Massey HT; Day SW; Throckmorton AL
    ASAIO J; 2023 Dec; 69(12):1090-1098. PubMed ID: 37774695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility assessment of the first generation PediaFlow pediatric ventricular assist device.
    Johnson CA; Vandenberghe S; Daly AR; Woolley JR; Snyder ST; Verkaik JE; Ye SH; Borovetz HS; Antaki JF; Wearden PD; Kameneva MV; Wagner WR
    Artif Organs; 2011 Jan; 35(1):9-21. PubMed ID: 20626737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleveland Clinic Continuous-Flow Total Artificial Heart: Progress Report and Technology Update.
    Kuroda T; Miyagi C; Polakowski AR; Flick CR; Kuban BD; Fukamachi K; Karimov JH
    ASAIO J; 2024 Feb; 70(2):116-123. PubMed ID: 37851000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved calculation method for dry modal analysis of four-stage centrifugal-pump rotor system based on concentrated-mass method.
    Li J; Wei Y; Gao H; Song X; Jia Z
    PLoS One; 2024; 19(6):e0306061. PubMed ID: 38941321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Water-Pump.
    West J Med Surg; 1847 Aug; 8(2):180. PubMed ID: 38210182
    [No Abstract]   [Full Text] [Related]  

  • 8. Spiral groove bearing design for improving plasma skimming in rotary blood pumps.
    Jiang M; Hijikata W
    J Artif Organs; 2024 Sep; 27(3):212-221. PubMed ID: 38153606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size.
    Kosaka R; Sakota D; Nishida M; Maruyama O; Yamane T
    J Artif Organs; 2021 Jun; 24(2):157-163. PubMed ID: 33428006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Parametric Study of the Axial and Radial Clearances in a Centrifugal Rotary Blood Pump.
    Rezaienia MA; Paul G; Avital E; Rothman M; Korakianitis T
    ASAIO J; 2018; 64(5):643-650. PubMed ID: 29076943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yasui K; Nishida M; Kawaguchi Y; Maruyama O; Yamane T
    Artif Organs; 2014 Sep; 38(9):818-22. PubMed ID: 25234763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid dynamic design for low hemolysis in a hydrodynamically levitated centrifugal blood pump.
    Murashige T; Kosaka R; Nishida M; Maruyama O; Yamane T; Kuwana K; Kawaguchi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2732-5. PubMed ID: 24110292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice.
    Moazami N; Fukamachi K; Kobayashi M; Smedira NG; Hoercher KJ; Massiello A; Lee S; Horvath DJ; Starling RC
    J Heart Lung Transplant; 2013 Jan; 32(1):1-11. PubMed ID: 23260699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mini hemoreliable axial flow LVAD with magnetic bearings: part 2: design description.
    Goldowsky M
    ASAIO J; 2002; 48(1):98-100. PubMed ID: 11814106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.
    Kosaka R; Nishida M; Maruyama O; Yambe T; Imachi K; Yamane T
    Biomed Mater Eng; 2013; 23(1-2):37-47. PubMed ID: 23442235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.
    Kosaka R; Maruyama O; Nishida M; Yada T; Saito S; Hirai S; Yamane T
    Artif Organs; 2009 Oct; 33(10):798-804. PubMed ID: 19681836
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.