BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23442615)

  • 1. Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism.
    Zhao GY; Zhou MY; Zhao HL; Chen XL; Xie BB; Zhang XY; He HL; Zhou BC; Zhang YZ
    Food Chem; 2012 Oct; 134(4):1738-44. PubMed ID: 23442615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins.
    Ha M; Bekhit Ael-D; Carne A; Hopkins DL
    Food Chem; 2013 Jan; 136(2):989-98. PubMed ID: 23122154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tenderization effect of soy sauce on beef M. biceps femoris.
    Kim HW; Choi YS; Choi JH; Kim HY; Lee MA; Hwang KE; Song DH; Lim YB; Kim CJ
    Food Chem; 2013 Aug; 139(1-4):597-603. PubMed ID: 23561150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the proteolytic activities of new commercially available bacterial and fungal proteases toward meat proteins.
    Ha M; Bekhit Ael-D; Carne A; Hopkins DL
    J Food Sci; 2013 Feb; 78(2):C170-7. PubMed ID: 23323565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous proteases for meat tenderization.
    Bekhit AA; Hopkins DL; Geesink G; Bekhit AA; Franks P
    Crit Rev Food Sci Nutr; 2014; 54(8):1012-31. PubMed ID: 24499119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of blade tenderization, aging time, and aging temperature on tenderness of beef longissimus lumborum and gluteus medius.
    King DA; Wheeler TL; Shackelford SD; Pfeiffer KD; Nickelson R; Koohmaraie M
    J Anim Sci; 2009 Sep; 87(9):2952-60. PubMed ID: 19465491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of L- and iso-ascorbic acid on meat protein hydrolyzing activity of four commercial plant and three microbial protease preparations.
    Ha M; Bekhit Ael-D; Carne A
    Food Chem; 2014 Apr; 149():1-9. PubMed ID: 24295669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanistic effect of bromelain and papain on tenderization in jumbo squid (Dosidicus gigas) muscle.
    Jun-Hui X; Hui-Juan C; Bin Z; Hui Y
    Food Res Int; 2020 May; 131():108991. PubMed ID: 32247462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics in bovine semitendinosus muscle to assess emerging strategies based on papain injection and ultrasounds on meat tenderization process.
    Marino R; Della Malva A; Caroprese M; De Pilli T; Alessandrino O; Picariello G; Sevi A; Albenzio M
    Meat Sci; 2023 Jun; 200():109147. PubMed ID: 36848733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of blade tenderization, moisture enhancement and pancreatin enzyme treatment on the processing characteristics and tenderness of beef semitendinosus muscle.
    Pietrasik Z; Aalhus JL; Gibson LL; Shand PJ
    Meat Sci; 2010 Mar; 84(3):512-7. PubMed ID: 20374818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application potency of engineered G159 mutants on P1 substrate pocket of subtilisin YaB as improved meat tenderizers.
    Yeh CM; Yang MC; Tsai YC
    J Agric Food Chem; 2002 Oct; 50(21):6199-204. PubMed ID: 12358502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins.
    Santé-Lhoutellier V; Astruc T; Marinova P; Greve E; Gatellier P
    J Agric Food Chem; 2008 Feb; 56(4):1488-94. PubMed ID: 18237130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Flammulina velutipes on spent-hen breast meat tenderization.
    Kang GH; Kim SH; Kim JH; Kang HK; Kim DW; Seong PN; Cho SH; Park BY; Kim DH
    Poult Sci; 2012 Jan; 91(1):232-6. PubMed ID: 22184449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application and optimization of the tenderization of pig Longissimus dorsi muscle by adenosine 5'-monophosphate (AMP) using the response surface methodology.
    Deng S; Wang D; Zhang M; Geng Z; Sun C; Bian H; Xu W; Zhu Y; Liu F; Wu H
    Anim Sci J; 2016 Mar; 87(3):439-48. PubMed ID: 26212625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidomic Investigation of the Interplay between Enzymatic Tenderization and the Digestibility of Beef Semimembranosus Proteins.
    Zhao D; Xu Y; Gu T; Wang H; Yin Y; Sheng B; Li Y; Nian Y; Wang C; Li C; Xu X; Zhou G
    J Agric Food Chem; 2020 Jan; 68(4):1136-1146. PubMed ID: 31820954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review.
    Bolumar T; Enneking M; Toepfl S; Heinz V
    Meat Sci; 2013 Dec; 95(4):931-9. PubMed ID: 23660173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of processing temperature on tenderness, colour and yield of beef steaks subjected to high-hydrostatic pressure.
    Sikes AL; Tume RK
    Meat Sci; 2014 Jun; 97(2):244-8. PubMed ID: 24598071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inhibition of μ-calpain on the myofibril structure and myofibrillar protein degradation in postmortem ovine muscle.
    Li Z; Li X; Gao X; Du M; Zhang D
    J Sci Food Agric; 2017 May; 97(7):2122-2131. PubMed ID: 27581860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tenderisation of spent hen meat using ginger extract.
    Naveena BM; Mendiratta SK
    Br Poult Sci; 2001 Jul; 42(3):344-9. PubMed ID: 11469554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The "sponge effect" hypothesis: an alternative explanation of the improvement in the waterholding capacity of meat with ageing.
    Farouk MM; Mustafa NM; Wu G; Krsinic G
    Meat Sci; 2012 Mar; 90(3):670-7. PubMed ID: 22104253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.