These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 23442620)
1. Chitosan-tripolyphosphate submicron particles as the carrier of entrapped rutin. Konecsni K; Low NH; Nickerson MT Food Chem; 2012 Oct; 134(4):1775-9. PubMed ID: 23442620 [TBL] [Abstract][Full Text] [Related]
2. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Gan Q; Wang T; Cochrane C; McCarron P Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):65-73. PubMed ID: 16024239 [TBL] [Abstract][Full Text] [Related]
3. Coating with tripolyphosphate-crosslinked chitosan as a novel approach for enhanced stability of emulsomes following oral administration: Rutin as a model drug with improved anti-hyperlipidemic effect in rats. Asfour MH; Salama AAA Int J Pharm; 2023 Sep; 644():123314. PubMed ID: 37579826 [TBL] [Abstract][Full Text] [Related]
4. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Jonassen H; Kjøniksen AL; Hiorth M Biomacromolecules; 2012 Nov; 13(11):3747-56. PubMed ID: 23046433 [TBL] [Abstract][Full Text] [Related]
5. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Songsurang K; Praphairaksit N; Siraleartmukul K; Muangsin N Arch Pharm Res; 2011 Apr; 34(4):583-92. PubMed ID: 21544723 [TBL] [Abstract][Full Text] [Related]
6. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163 [TBL] [Abstract][Full Text] [Related]
7. Pitfalls in analyzing release from chitosan/tripolyphosphate micro- and nanoparticles. Cai Y; Lapitsky Y Eur J Pharm Biopharm; 2019 Sep; 142():204-215. PubMed ID: 31226368 [TBL] [Abstract][Full Text] [Related]
8. Thiomer nanoparticles: stabilization via covalent cross-linking. Barthelmes J; Dünnhaupt S; Hombach J; Bernkop-Schnürch A Drug Deliv; 2011 Nov; 18(8):613-9. PubMed ID: 22111974 [TBL] [Abstract][Full Text] [Related]
9. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Gan Q; Wang T Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948 [TBL] [Abstract][Full Text] [Related]
10. Chitosan nanoparticles: Polyphosphates cross-linking and protein delivery properties. Abdelgawad AM; Hudson SM Int J Biol Macromol; 2019 Sep; 136():133-142. PubMed ID: 31199974 [TBL] [Abstract][Full Text] [Related]
11. Analysis of chitosan/tripolyphosphate micro- and nanogel yields is key to understanding their protein uptake performance. Cai Y; Lapitsky Y J Colloid Interface Sci; 2017 May; 494():242-254. PubMed ID: 28160708 [TBL] [Abstract][Full Text] [Related]
12. Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Rodrigues S; da Costa AM; Grenha A Carbohydr Polym; 2012 Jun; 89(1):282-9. PubMed ID: 24750635 [TBL] [Abstract][Full Text] [Related]
13. Cavitation effect on chitosan nanoparticle size: a possible approach to protect drugs from ultrasonic stress. Floris A; Meloni MC; Lai F; Marongiu F; Maccioni AM; Sinico C Carbohydr Polym; 2013 Apr; 94(1):619-25. PubMed ID: 23544582 [TBL] [Abstract][Full Text] [Related]
14. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers. Raja MA; Katas H; Jing Wen T PLoS One; 2015; 10(6):e0128963. PubMed ID: 26068222 [TBL] [Abstract][Full Text] [Related]
15. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Fan W; Yan W; Xu Z; Ni H Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934 [TBL] [Abstract][Full Text] [Related]
16. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Honary S; Ebrahimi P; Hadianamrei R Pharm Dev Technol; 2014 Dec; 19(8):987-98. PubMed ID: 24147898 [TBL] [Abstract][Full Text] [Related]
17. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Hashad RA; Ishak RA; Fahmy S; Mansour S; Geneidi AS Int J Biol Macromol; 2016 May; 86():50-8. PubMed ID: 26783636 [TBL] [Abstract][Full Text] [Related]
18. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Sawtarie N; Cai Y; Lapitsky Y Colloids Surf B Biointerfaces; 2017 Sep; 157():110-117. PubMed ID: 28578269 [TBL] [Abstract][Full Text] [Related]
19. Development of a mucoadhesive nanoparticulate drug delivery system for a targeted drug release in the bladder. Barthelmes J; Perera G; Hombach J; Dünnhaupt S; Bernkop-Schnürch A Int J Pharm; 2011 Sep; 416(1):339-45. PubMed ID: 21726619 [TBL] [Abstract][Full Text] [Related]
20. Development and characterisation of chitosan nanoparticles for siRNA delivery. Katas H; Alpar HO J Control Release; 2006 Oct; 115(2):216-25. PubMed ID: 16959358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]