These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23442782)

  • 1. Broadband beamforming compensation algorithm in CI front-end acquisition.
    Chen Y; Gong Q
    Biomed Eng Online; 2013 Feb; 12():18. PubMed ID: 23442782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time spectrum estimation-based dual-channel speech-enhancement algorithm for cochlear implant.
    Chen Y; Gong Q
    Biomed Eng Online; 2012 Sep; 11():74. PubMed ID: 23006896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research of front-end speech enhancement and beamforming algorithm based on dual microphoneforcochlear implant].
    Chen Y; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Jun; 36(3):468-477. PubMed ID: 31232551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of speech reception threshold in noise in young Cochlear™ Nucleus
    Razza S; Zaccone M; Meli A; Cristofari E
    Int J Pediatr Otorhinolaryngol; 2017 Dec; 103():71-75. PubMed ID: 29224769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research progress of microphone array based front-end speech enhancement technology for cochlear implant].
    Chen Y; Chen W; Zhang P; Chen P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):696-704. PubMed ID: 31441274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users.
    Hersbach AA; Arora K; Mauger SJ; Dawson PW
    Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of directional microphone and adaptive multichannel noise reduction algorithm on cochlear implant performance.
    Chung K; Zeng FG; Acker KN
    J Acoust Soc Am; 2006 Oct; 120(4):2216-27. PubMed ID: 17069317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Cochlear Implant Performance in the Wind Through Spectral Masking Release: A Multi-microphone and Multichannel Strategy.
    Chung K
    Ear Hear; 2020; 41(2):420-432. PubMed ID: 31425361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A modified speech enhancement algorithm for electronic cochlear implant and its digital signal processing realization].
    Wang Y; Tian X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Aug; 31(4):742-46, 754. PubMed ID: 25464779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.
    Spriet A; Van Deun L; Eftaxiadis K; Laneau J; Moonen M; van Dijk B; van Wieringen A; Wouters J
    Ear Hear; 2007 Feb; 28(1):62-72. PubMed ID: 17204899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A beamformer post-filter for cochlear implant noise reduction.
    Hersbach AA; Grayden DB; Fallon JB; McDermott HJ
    J Acoust Soc Am; 2013 Apr; 133(4):2412-20. PubMed ID: 23556606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants.
    Hu H; Lutman ME; Ewert SD; Li G; Bleeck S
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time automatic switching between noise suppression algorithms for deployment in cochlear implants.
    Gopalakrishna V; Kehtarnavaz N; Loizou PC; Panahi I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():863-6. PubMed ID: 21097196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The design and validation of a hybrid digital-signal-processing plug-in for traditional cochlear implant speech processors.
    Hajiaghababa F; Marateb HR; Kermani S
    Comput Methods Programs Biomed; 2018 Jun; 159():103-109. PubMed ID: 29650304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Microphone Technology to Improve Speech Perception in Noise in Children with Cochlear Implants.
    Johnstone PM; Mills KET; Humphrey E; Yeager KR; Jones E; McElligott K; Pierce A; Agrawal S; Froeling C; Little JP
    J Am Acad Audiol; 2018 Oct; 29(9):814-825. PubMed ID: 30278866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields.
    Chung K; Nelson L; Teske M
    Hear Res; 2012 Sep; 291(1-2):41-51. PubMed ID: 22750449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech Understanding and Sound Source Localization by Cochlear Implant Listeners Using a Pinna-Effect Imitating Microphone and an Adaptive Beamformer.
    Dorman MF; Natale S; Loiselle L
    J Am Acad Audiol; 2018 Mar; 29(3):197-205. PubMed ID: 29488870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Speech Recognition of Cochlear Implant Recipients Using Adaptive, Digital Remote Microphone Technology and a Speech Enhancement Sound Processing Algorithm.
    Wolfe J; Morais M; Schafer E; Agrawal S; Koch D
    J Am Acad Audiol; 2015 May; 26(5):502-508. PubMed ID: 26055839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimising the effect of noise reduction algorithm ClearVoice in cochlear implant users by increasing the maximum comfort levels.
    Dingemanse JG; Goedegebure A
    Int J Audiol; 2018 Mar; 57(3):230-235. PubMed ID: 29065731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.